The Effect of Carbon Nanotubes on drought resistance of Caucasian Alder (Alnus subcordata C.A.Mey) in Germination Stage

Document Type : Original Article

Authors

Abstract

Current research aimed to evaluate the effect of nano priming using multi-walled carbon nanotubes on drought tolerance of Caucasian alder. This study was employed a factorial experiment in a completely randomized design with four replications. Drought stress was applied in the laboratory, using a solution of polyethylene glycol 6000 at 0, -2, -4, -6, and -8 bar on the primed seeds with concentrations of 0, 10, 30, 50 and 100 mg l-1 of carbon nanotubes. The results showed significant effect of nano priming and drought stress on germination factors such as germination rate and percentage, root fresh weight, shoot fresh weight and root to shoot fresh weight at the probability of 99%. The highest germination rate and percentage at all levels of drought stress, was related to100 mg l-1 of nano carbon treatment. The highest fresh weight of root and shoot at all levels of drought stress was related to 30 mg l-1 of nano carbon treatment. According to the results of this experiment it could be concluded that nano-priming improve seed germination characteristics of alder tree under drought stress.

Keywords


Afzal, I., S. Rauf, S. M. A. Basra, and G. Murtaza, 2008. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant. Soil. Environ. 54(9):382–388.
Almansouri, M., J. M. Kinet, and S. Lutts, 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf). Plant. Soil. 231(2):243–245.
An, Y. Y., Z. S. Liang, and Y. Zhang, 2011. Seed germination responses of Periploca sepium Bunge, a dominant shrub in the loess hilly regions of China. J. Arid. Environ. 75(5):504–508.
Boydak, M., H. Dirik, F. Tilki, and M. Çalikoğlu, 2003. Effects of water stress on germination in six provenances of Pinus brutia seeds from different bioclimatic zones in Turkey. Turk. J. Agric. For. 27(2):91–97.
Cañas, J. E., M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E. H. Lee, and D. Olszyk, 2008. Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27(9):1922–1931.
Dehkourdi, E. H., and M. Mosavi, 2013. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace. Elem. Res. 155(2):283–286.
Feizi,H., P. R., Moghaddam, N. Shahtahmassebi, and A. Fotovat, 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace. Elem. Res. 146:101–106.
Gholami, M., M. Rahemi, and B. Kholdebarin, 2010. Effect of drought stress induced by polyethylene Glycol on Seed Germination of four wild almond species. Aust. J. Basic Appl. Sci. 4(5):785–791.
Haghighi, M., Z. Afifipour, and M. Mozafarian, 2012. The effect of N-Si on tomato seed germination under salinity levels. J. Biol. Environ. Sci. 6(16):87–90.
Haghighi, Maryam, and J. A. T. da Silva, 2014. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop. Sci. Biotechnol. 17(4):201–208.
Hegarty, T. W. 1978. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant. Cell. Environ. 1(2):101–119.
Hosseinzadeh Colagar, A., H. Yousefzadeh, F. Shayanmehr, S. Gh. Jalali, H. Zare, and N. P. Tippery, 2016. Molecular taxonomy of Hyrcanian Alnus using nuclear ribosomal ITS and chloroplast trnH-psbA DNA barcode markers. Syst. Biodivers. 14(1):88–101.
Jiang, Y., Z. Hua, Y. Zhao, Q. Liu, F. Wang, and Q. Zhang, 2014. The effect of carbon nanotubes on rice seed germination and root growth. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), pp. 1207–1212. Springer Berlin Heidelberg.
Khodakovskaya, M. V., K. de Silva, A. S. Biris, E. Dervishi, and H. Villagarcia, 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano. 6(3):2128–2135.
Khodakovskaya, M., E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, and A. S. Biris, 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 3(10):3221–3227.
Lahiani, M. H., J. Chen, F. Irin, A. A. Puretzky, M. J. Green, and M. V. Khodakovskaya, 2015. Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon. 81:607–619.
Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee, 2010. Effects of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest. Syst. 80:333–430.
Lin, D., and B. Xing, 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2):243–250.
Lu, C. M., C. Y. Zhang, J. Q. Wen, G. R. Wu, M. X. Tao, 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21:168–172.
Michel, B. E., M. R. Kaufmann, 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51(5):914–916.
Nair, R., M. S. Mohamed, W. Gao, T. Maekawa, Y. Yoshida, P. M. Ajayan, and D. S. Kumar, 2012. Effect of carbon nanomaterials on the germination and growth of rice plants. J. Nanosci. Nanotechnol. 12(3):2212–2220.
Nourmohammadi, K., D. Rahimi, R. Naghdi, and D. Kartoolinejad, 2016. Effects of physical and chemical treatments of seed dormancy breaking on seedling quality index (QI) of Caspian locust (Gleditsia caspica Desf.). Austrian. J. For. Sci. 133(2):157–171.
Savithramma, N., S. Ankanna, and G. Bhumi, 2012. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision. 2:61–68.
Shayanmehr, F., S. Gh. J., A. Hosseinzadeh Colagar, H. Zare, and H. Yousefzadeh, 2014. Morphological variations of genus Alnus in Iran: assessment of five new taxa. Taxon. Biosystem. 6(18):45–64.
Shayanmehr, F., S. Jalali, A. Hosseinzadeh Colagar, H. Yousefzadeh, and H. Zare. 2015. Pollen Morphology of the genus Alnus Mill. in Hyrcanian Forests, North of Iran. Appl. Ecol. Env. Res. 13(3):833–847.
Tripathi, S., S. K., Sonkar and S. Sarkar, 2011. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale. 3(3):1176–1181.
Wang, X., H. Han, X. Liu, X. Gu, K. Chen, and D. Lu, 2012. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res. 14(6):1–10.
Begum, P., R. Ikhtiari, B. Fugetsu, M. Matsuoka, T. Akasaka, and F. Watari, 2012. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl. Surf. Sci. 262:120–124.
Ikhtiari, R., 2014. Studies on phytotoxicities of carbon nanomaterials in seedling stage. Doctoral thesis, Hokkaido University, Japan, pp. 1–107.
Rahimi, D., D. Kartoolinejad, K. Nourmohammadi, and R. Naghdi, 2016. Increasing drought resistance of Alnus subcordata CA Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. J. For. Sci. 62(6):269–278.
Yousefi, S., D. Kartoolinejad, M. Bahmani, and R. Naghdi, 2017. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. J. Sustain. For. 36(2):107–120.
Claessens, H., A. Oosterbaan, P. Savill, and J. Rondeux, 2010. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry. 83(2):163–175.