Document Type : Original Article

Authors

University of Tehran

Abstract

Nanotechnology is a powerful new technology, that can create a huge revolution in food supply and agriculture in global scope. In This research the effects of different concentrations of silver nano particles was studied on germination factors of two cultivars of cotton (Sayokra & Varamin) and one cultivar of mays (Single Cross 704) and the effects of these concentrations on MIC, MBC in (Xanthomonas smithii) as a seed-born bacteria and the agent of blight disease on cotton. The treatments used at this experiment including 20, 40, 60, 80, 100, 120, 140, 160, 320, 640 µl/l concentrations of silver nano particles. Their effect were studied on seed germination rate, root, shoot and seedling length. maximum amount of shoot and seedling length in Sayokra was ralated to 120 µl/l and in Varamin cultivar was related to 60 µl/l. About mays cultivar, root, shoot and seedling length had highest and lowest amount at 80 and 160 µl/l respectively, and about the germination rate the lowest amount was relevant to 640 µl/l. in this study the MIC of (X. smithii) was 0.5 µl/l and the 100% inhibitor concentration was 15 µl/l.

Keywords

Ashrafi, S. J., M. Falahati Rastegar, B. Jafarpour, N. Shahtahmasb, and S. Anil Kumar, 2010.
Study the efficacy of silver nanoparticles in controlling lentil Fusarium wilt. The Nineteenth Iranian Plant Protection Congr 797.
Azam, G., and R. E. Allan, 1976. Interrelationships of seedling vigor criteria of wheat under different field situations and soil water potentials. Crop Sci. 16: 615-618.
Cho, K. H., J. E. Park, T. Osaka, and S. G. Park, 2005. The study of antimicrobial activity and preservative effect of nanosilver ingredient. Electrochim Acta 51: 956- 960.
Choi, O., and Z. Hu, 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42: 4583-4588.
Davoudi, A. 2008. The use of silver nanoparticles in epiphytic population reduction and management of fire blight disease in pear orchards in Qazvin. The Eighteenth Iranian Plant Protection Congress 268.
Feng, Q. L. J. Wu, G. Q. Chen, K. Z. Cui, T. N. Kim, and J. O. Kim, 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662- 668.
Jensen, M. 2002. Seed vigour testing for predicting field seedling emergence in Fagus sylvatica L. Denderobiology 47: 47-54.
Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. and Envir. Microbiol. 74: 2171-2178.
Kim, J. S., E. Kuk, K. N. Yu, J. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Hwang, Y. Kim, Y. Lee, D. H. Jeong, and M. Cho, 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 95-101.
Kora, A. J., and J. Arunachalam, 2010. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol Biotechnol. 27:1209-1216.
Lin, D., and B. Xing, 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Envir. Pollut. 150: 243-250.
Lu, C. M., C. Y. Zhang, J. Q. Wen, G. R. Wu, and M. X. Tao, 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21: 168-172.
Mac William, J. R., R. J. Clements, and P. M. Dowling, 1970. Some factors influencing the germination and early seedling development of pasture plants. Australian J. of Agric. Res. 21: 19-32.
Matsumura, Y., K. Yoshikata, S. Kunisaki, and T. Tsuchido, 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. App. Environ. Microbiol. 69: 4278-4281.
Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. Yacaman, J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnol. 16: 2346-2353.
Nel, A., T. Xia, L. Mädler, and N. Li. 2006. Toxic potential of materials at the nanolevel. Science, 311: 622-627.
Nithya, R., and R. Ragunathan, 2009. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. J. Nanomat. Biostr. 4: 623-629.
Raffi, M., F. Hussain, T. M. Bhatti, J. I. Akhter, A. Hameed, and M. M. Hasan, 2008. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24: 192-196.
Ruparelia, J. P., A. K. Chatterjee, S. P. Duttagupta, and S. Mukherjee, 2008. Strain specifity in antimicrobial activity of silver and coopper nanoparticles. Appl. Environ. Microbiol. 73: 1712-1720.
Salehi, M., and F. Tamaskani, 2009. Effects of silver nanoparticles on seed germination and seedling growth of wheat under salt stress. The first National Conference on Science and Seed Technology in Iran 232.
Saliba, A. M., R. Nishi, B. Raymond, E. A. Marques, U. G. Lopes, L. Touqui, and M. C. Plotkowski, 2006. Implication of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microb. Infec. 2: 450-459.
Sasani, Y., M. Karimi, A. H. Naserchiyan, F. Safari, H. Hajargasht, A. Ebrahimi, and M. R. Bihamta, 2009. Evaluate the effects of different concentrations of silver nanoparticles on indicators of
germination in wheat, vetch, millet and canola. The Sixth National Biotechnology Congress of Islamic Republic of Iran 156.
Seregin, I.V., and A.D. Kozhevnikova. 2005. Distribution of cadmium, lead, nickel, and strontium in imbibing Maize caryopses. Russ.J. Plant Physiol. 52(4): 565-569.
Shahrokh, S., and G. Emtiazi, 2009. Toxicity and unusual biological behaviour of nanosilver on Gram-positive and negative bacteria assayed by Microtiter- plate. European J. of Biol. Sci. 1: 28-31.
Sondi, I., and B. Salopek-Sondi, 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram- negative bacteria. J. Coll. Interf. Sci. 275: 177-182.
Soni, I., and S. B. Bondi, 2004. Silver nanoparticles as antimicrobial agent: A case study on E.coli as a model for Gram-negative bacteria. J. of colloid and interface sci. 275: 1770-1782.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biolog. Tra. Elem. Res. 110.
Zhang, W.X., and B. Karn. 2005. Nanoscale environmental science and technology: challenges and opportunities. Environ. Sci. Technol. 39: 94A-95A.