Document Type : Original Article

Abstract

In order to investigate the effect of different strains of Pseudomonas fluorescens with plant growth-promoting and salinity tolerance charachteristics on germination attributed traits and early growth of barley, a study was performed in Persian Gulf University, Bushehr. A factorial experiment was conducted with three factors of bacteria in four levels (P. fluorescens strains B10, B2-10, B2-11 and B4-6), salinity levels (0, 3 and 6 ds/m) and cultivar in five levels (Karun, Zehak, Nimrooz, South of the Sahra) in a completely randomized design with three replications. After a week, germination percentage and speed, seed vigor, length and dry weight of coleoptyl and radical and salinity tolerance index were measured. Results revealed that the main effect of bacteria, salinity and cultivars and their interactions were significant on all measured traits. Seed pre-treatment with all bacteria strains increased seed germination attributed traits, salinity tolerance index and seedling early growth were under salinity stress (P≤0.05). The current study confirms the ameliorative effect of indole acetic acid and ACC deaminase producing Pseudomonas strains on growth factors of barley seedlings under salt stress.

Keywords

Akhgar, A. R., M. Arzanlou, P. A. H. M. Bakker, and M. Hamidpour. 2014. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24(4): 461-468.
Anitha, G., and B. S. Kumudini. 2014. Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion. J. Environ. Biol. 35: 627-634.
Azadikhah, M., F. Jamali, H. R. Nooryazdan, and F. Bayat. 2017. Screening Pseudomonas fluorescens strains for plant growth promoting properties and salinity tolerance. Biol. J. Microorganism. 21: 95-107.
Bajji, M., J. M. Kinet, and S. Lutts. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Can. J. Bot. 80: 297-304.
Bal, H. B., L. Nayak, S. Das, and T. K. Adhya. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93-105.
Bashan, Y., G. Holguin, and L. E. D. Bashan. 2004. Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50:521–577.
Belimov, A. A., V. I. Safronova, and T. Mimura. 2002. Response of spring rape (Brassica napus var. Oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1- aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol. 48:189–199
Bharathi R., R. Vivekananthan, S. Harish, A. Ramanathan, and R. Samiyappan. 2004. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot. 23:835–843.
Dell’Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 2: 153-162.
Dimkpa C., T. Weinan, and F. Asch. 2009. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32:1682–1694
Egamberdieva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36:184–189.
Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 31:861-864.
Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109–117.
Glick, B. R., C. Liu, S. Ghosh, and E. B. Dumbroff. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem. 29: 1233-1239.
Glick, B. R., C. B. Jacobson, M.M.K. Schwarze, and J. J. Pasternak. 1994. 1- Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promotingrhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911–915.
Glick, B. R., D. M. Penrose, and M. A. Wenbo. 2001. Bacterial promotion of plant growth. Biotechnol. Adv. 19: 135-138.
Glick B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur. J. Plant Pathol. 119:329–339
Haas, D. and G. Défago. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3(4):307-319.
Han, H. S., and K. D. Lee. 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res. J. Agric. Biol. Sci. 1:210–215.
Hontzeas, N., S. S. Saleh, and B. R. Glick. 2004. Changes in gene expression of canola roots induced by ACC-deaminase containing plant growth promoting bacteria. Mol. Plant Microbe Interact. 17(8):865-871.
ISTA. 2010. International rules for seed testing. Supplement to Seed Science and Technology. 21: 1-288.
Jamil, M., D. B. Lee, K.Y. Jung, M. Ashraf, S. C. Lee, and E. S. Rhal. 2006. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J. Cent. Eur. Agric. 7:273–282.
Kang, S. M., A. L. Khan, M. Waqas, Y. H. You, J. H Kim, J. G. Kim,M. Hamayun, and I. J. Lee. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9(1):673-682.
Kim, S. K., T. K. Son, S.Y. Park, I. J. Lee, B. H. Lee, H. Y. Kim, and S. C. Lee. 2006. Influences of gibberellin and auxin on endogenous plant hormone and starch mobilization during rice seed germination under salt stress. J. Environ. Biol. 27:181–186
Li, J. and B. R. Glick. 2001. Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can. J. Microbiol. 47: 359–367.
Lucy, M., E. Reed, B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. A Van Leeuw. J. Microb. 86:1–25
Lugtenberg, B. J. J., T. F. C. Chin-A-Woeng, and G. V. Bloemberg. 2002. Microbe- plant interactons: principles and mechanisms. A Van Leeuw. J. Microb. 81: 373–383.
Mangmang, A. J. S., R. Deaker, and G. Rogers. 2016. Germination Characteristics of Cucumber Influenced by Plant Growth-promoting Rhizobacteria, Int. J. of Veg. Sci. 22:1, 66-75.
Mayak, S., T. Tirosh, B. R. Glick. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42:565–572
Mohsen Nasab, F., Sharifi Zadeh, M., and Siadat, Ata Allah. 1389. Effect of seed deterioration on seedling establishment, yield and part yield of different wheat cultivars in Khuzestan condition. Crop physiol. 7: 59-71.
Munns, R. 2005. Genes and salt tolerance: bringing them together. New phytol. 167(3): 645-663.
Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
Nakbanpote, W., N. Panitlurtumpai, A. Sangdee, N. Sakulpone, P. Sirisom, and A. Pimthong. 2014. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J. Plant Interact. 9: 379-378.
Nishma, K. S., B. Adrisyanti, S. H. Anusha, P. Rupali, K. Sneha, N. S. Jayamohan and B. S. Kumudini. 2014. Induced growth promotion under in vitro salt stress tolerance on solanum lycopersicum by fluorescent pseudomonads associated with rhizosphere. Int. J. App. Sci. Eng. Res. 3(2):422-430.
Orchard, T. 1977. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 5: 61-69.
Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795–3801.
Pourbabaee, A. A., E. Bahmani, H. A. Alikhani, and S. Emami. 2016. Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J. Agric. Sci. Tech. 18: 855-864.
Raaijmakers, J. M, T.C. Paulitz, C. Steinberg, C. Alabouvette, and T. Moënne-Loccoz. 2009. The rhizosphere: a playground and battlefield for soil-borne pathogens and beneficial microorganisms. Plant Soil 321:341-361
Rauf,  M., M. Munir, M. Ul Hassan, M. Ahmad and  M. Afzal. 2007. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afr. J. Biotechnol. 6:971-975.
Saravanakumar, D., and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102: 1283–1292.
Sopha, V. T., E. Savage, A. O. Anacle and C. A. Beyl. 1991. Vertical differences of wheat and triticale to water stress. J. Agron. Crop Sci. 167: 23-28.
Taiz, L., and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates Inc., Publishers Sunderland, Mass. USA.
Tank, N., and M. Saraf. 2010. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants.J. Plant Interact. 5: 51-58.
Zahir, Z. A, A. Munir, H. N. Asghar, B. Shaharoona, and M. Arshad. 2008. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J. Microbiol. Biotechnol. 18(5):958-963.