De novo tanscriptome sequencing and functional annotation of differentially expressed genes in large and small seeds of common cocklebur (Xanthium strumarium L.) during seed development

Document Type : Original Article

Authors

1 PhD student, seed science and technology, university of Mohaghegh Ardabili

2 University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Agronomy and Plant Breeding

3 Agricultural Biotechnology Institute of Iran

4 Professor/ Dept. of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad. Iran.

5 Prof./Dept. of Agronomy and Breeding, College of Agriculture and Natural Resources, University of Tehran, Iran.

Abstract

Common cocklebur (Xanthium strumarium L.) is a widespread weed with high medical value and interested for researchers because of deep dormancy in one of its two seeds in one bur. However, lack of genomic data has led to low information about it. Transcriptome large and small seeds were sequenced using Illumina platform to identify and functional analysis of differentially expressed transcripts in two seeds. Identified sequences in each seeds were compared and differentially expressed genes were functionally annotated. In this research 191192 sequence with a mean of 989.69 bp were detected. Sequence similarity analysis and functional analysis was carried out aginst nr, GO and KEGG databases. Differentially expressed genes had the most similarity with sunflower (83.41 per cent) in terms of top hits. GO analysis led to identify 615 functional annotation distributed in 36 categories. The most abomdant GO in biological process was biosynthesis. Results of our research shows the higher biosynthetic and metabolic processes in large seed of certain bur rather than the small one and also key regulatory role of transcription during seed development.

Keywords


Arruda, P., E.L. Kemper, F. Papes, and A. Leite. 2000. Regulation of lysine catabolism in higher plants. Trends Plant Sci. 5 (8): 324-330. https://doi.org/10.1016/S1360-1385 (00)01688-5
Autran, D., C. Baroux, M.T. Raissig, T. Lenormand, M. Wittig, S. Grob, A. Steimer, M. Barann, U.C. Klostermeier, O. Leblanc, J.P. Vielle-Calzada, P. Rosenstiel, D. Grimanelli, and U. Grossniklaus. 2011. Maternal epigenetic pathways control parental contributionstons to Arabidopsis early embryogenesis. Cell. 145: 707-719. https://doi.org/10.1016/j.cell.2011.04.014
Belmonte, M.F., R.C. Kirkbride, S.L. Stone, J.M. Pelletier, A.Q. Bui, E.C. Yeung, M. Hashimoto, J. Fei, C.M. Harada, M.D. Munoz, B.H. Le, G.N. Drews, S.M. Brady, R.B. Goldberg, and J.J. Harada. 2013. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. PNAS. 110 (5): 435-444. https://doi.org/10.1073/pnas.1222061110
Bourdin, B., H. Adenier, and Y. Perrin. 2007. Carnitine is associated with fatty acid metabolism in plants. Plant Physiol. Biochem. 45: 926-931. https://doi.org/10.1016/j.plaphy.2007.09.009
Chen, H., F.W. Wang, Y.Y. Dong, N. Wang, Y.P. Sun, X.Y. Li, L. Liu, X.D. Fan, H.L. Yin, Y.Y. Jing, X.Y. Zhang, Y.L. Li, G. Chen, and H. Li. 2012. Sequence mining and transcript profiling to explore differentially expressed genes associated with lipid biosynthesis during soybean seed development. BMC Plant Biol. 12: 122. https://doi.org/10.1186/1471-2229-12-122
Curtin, S.J., F. Zhang, J. Sander, W.J. Haun, C. Starker, N.J. Baltes, D. Reyon, E.J. Dahiborg, M.J. Goodwin, A.P. Coffman, D. Dobbs, J.K. Joung, D.F. Voytas, and R.M. Stupar. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2(156): 466-473.
Gehrig, H., V. Heute, and M. Kluge. 2001. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers. Mol. Phylogenet. Evol. 20 (2): 262-274. https://doi.org/10.1006/mpev.2001.0973
Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotech. 29 (7): 644-652. https://doi.org/10.1038/nbt.1883
Izui, K., H. Matsumura, T. Furumoto, and Y. Kai. 2004. PHOSPHOENOLPYRUVATE CARBOXYLASE: A new era of structural biology. Annu. Rev. Plant Biol. 55: 69-84. https://doi.org/10.1146/annurev.arplant.55.031903.141619
Kanehisa, M., Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: 457-462. https://doi.org/10.1093/nar/gkv1070
Le, B., A. Javier, A. Wagmaister, T. Kavashima, and A. Bui. 2007. Using Genomics to Study Legume Seed Development. Plant Physiol. 144: 562-574. https://doi.org/10.1104/pp.107.100362
Levesque-Tremblay, G., K. Müller, S.D. Mansfield, and G.W. Haughn. 2015. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. Plant Physiol. 167: 725-737.
Li, B., and C.N. Dewey. 2011. RSEM : accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12: 323. https://doi.org/10.1186/1471-2105-12-323
Ponnu, J., V. Wahl, and M. Schmid. 2011. Trehalose-6-phosphate: connecting plant metabolism and development. Front. Plant Sci. 2: 70. https://doi.org/10.3389/fpls.2011.00070
Robinson, M.D., D.J. Mccarthy, and G.K. Smyth. 2010. edgeR : a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26 (1): 139-140. https://doi.org/10.1093/bioinformatics/btp616
Severin, A.J., J.L. Woody, Y.T. Bolon, B. Joseph, B.W. Diers, A.D. Farmer, G.J. Muehlbauer, R.T. Nelson, D. Grant, J.E. Specht, M.A. Graham, S.B. Cannon, G.D. May, C.P. Vance, R.C. Shomaker. 2010. RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 10: 160. https://doi.org/10.1186/1471-2229-10-160
Timm, S., M. Wittmi, S. Gamlien, R. Ewald, A. Florian, M. Frank, M. Wirtz, R. Hell, A.R. Ferinie, and H. Bauwea. 2015. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell. https://doi.org/10.1105/tpc.15.00105
Troncoso-Ponce, M.A., A. Kilaru, X. Cao, T.P. Durrett, J. Fan, J.K. Jensen, … and J.B. Ohlrogge. 2011. Comparative deep transcriptional profiling of four developing oilseeds. Plant J. 68: 1014-1027. https://doi.org/10.1111/j.1365-313X.2011.04751.x
Tzin, V., and G. Gad. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 3(6): 956-972. https://doi.org/10.1093/mp/ssq048
Vidal, J., and R. Chollet. 1997. Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci. 2(6): 230-237. https://doi.org/10.1016/S1360-1385 (97)01046-7
Vogt, T. 2010. Phenylpropanoid biosynthesis. Mol Plant. 3(1): 2-20. https://doi.org/10.1093/mp/ssp106.