Effect of secondary dormancy induction on seedling emergence of canola genotypes

Document Type : Original Article

Authors

1 University of Tehran

2 College of Aboutahian, University of Tehran

Abstract

The purpose of this study was to quantification the effect of secondary dormancy inducing on emergence rapeseed using Chapman-Richards model under field conditions. This experiment was carried out using 20 rapeseed genotypes cultivated in Iran under field conditions. Seeds were tested for secondary dormancy according to the Hohenheim standard dormancy test. Seedling emergence trial was carried out using a randomized complete block as a factorial arrangement with four replications in a research farm of Abourahian Campus, University of Tehran for 122 days. Emerged seedlings were removed after counting. The results of this study showed that both genotype and drought stress factors are effective on seedling emergence percentage and rate of rapeseed under field conditions. However, potential secondary dormancy inducing was different among the cultivars, and in Karaj2, H50 and SLM046 genotypes emergence rate before inducing secondary dormancy was 0.407, 0.143 and 0.355 which increased to 0.411, 0.228 and 0.364 after inducing secondary dormancy, respectively. the results of the mean comparison showed that the maximum percentage of emergence in nondormant seed was related to Ahmadi cultivar, but this cultivar was not significantly different with other varieties of Hayola, Moghan, SLM046, RGS003, Opera and Karaj. When secondary dormany induced to seeds, Ahmadi cultivar had the highest percentage of emergence and the lowest percentage of emergence after dormancy inducing was related to Talayeh cultivar.

Keywords


Alvarado, V, and K.J. Bradford. 2005. Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Sci. Res. 15(2): 77-88.
Auge, G.A., L.K. Blair, L.T. Burghardt, J. Coughlan, B. Edwards, L.D. Leverett, and K. Donohue.2015. Secondary dormancy dynamics depends on primary dormancy status in Arabidopsis thaliana. Seed Sci. Res. 25(2): 230-246.
Batlla, D., and R.L. Benech-Arnold. 2007. Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Prot. 26(3): 189-197.
Bradford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50(2): 248-260.
Bradford, K.J. 1990. A water relations analysis of seed germination rates. Plant Physiol. 94(2):840-849.
Benech, R.A., C.M. Ghersa, R.A. Sanchez, and P. Insausti. 1990. A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Res. 30(2): 91-99.
Chen, S.Y., C.C. Baskin, J.M. Baskin, and C.T. Chien. 2013. Underdeveloped embryos and kinds of dormancy in seeds of two gymnosperms: Podocarpus costalis and Nageia nagi (Podocarpaceae). Seed Sci. Res. 23(1): 75-81.
Del Monte, J. P, and A. M. Tarquis.1997. The role of temperature in the seed germination of two species of the Solanum nigrum complex. J. Exp. Bot. 48(12): 2087-2093.
Forcella, F., R.L.B. Arnold, R. Sanchez, and C.M. Ghersa, 2000. Modeling seedling emergence. Field Crop Res. 67(2):123-139.
Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci Res. 8(2): 201-210.
Finch-Savage, W. E, and K. Phelps.1993. Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. J. Exp. Bot. 44(2): 407-414.
Gulden, R.H., S.J. Shirtliffe, and A.G. Thomas.2003. Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci. 51(1): 83-86.
Gruber, S., A. Bühler, J. Möhring, and W. Claupein. 2010. Sleepers in the soil—vertical distribution by tillage and long-term survival of oilseed rape seeds compared with plastic pellets. Eur. J. Agron. 33(2): 81-88.
Gruber, S, and W. Claupein. 2008. Emergence and establishment of volunteer oilseed rape in spring and winter crops. J. Plant Dis. Prot. 21(1) 193-198.
Gruber, S., C. Pekrun, and W. Claupein. 2004. Seed persistence of oilseed rape (Brassica napus): variation in transgenic and conventionally bred cultivars. J. Agric. Sci. 142(1): 29-40.
Gulden, R.H., A.G. Thomas, and S.J. Shirtliffe. 2004a. Relative contribution of genotype, seed size and environment to secondary seed dormancy potential in Canadian spring oilseed rape (Brassica napus). Weed Res. 44: 97–106.
Gulden, R.H., A.G. Thomas, and S.J. Shirtliffe.  2004b. Secondary dormancy, temperature, and burial depth regulate seedbank dynamics in canola. Weed Sci. 52(3): 382-388.
Gruber, S., K. Emrich, and W. Claupein. 2009. Classification of canola (Brassica napus) winter cultivars by secondary dormancy. Can. J. Plant Sci. 89(4): 613-619.
GonzalezAndujar, J.L., G.R. Chantre, C., Morvillo, A.M. Blanco, and F. Forcella. 2016. Predicting field weed emergence with empirical models and soft computing techniques. Weed Res. 56(6): 415-423.
Gummerson, R.J. 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37(6): 729-741.
Grundy, A. C., K. Phelps, R. J., Reader, and S. Burston. 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytol. 148(3): 433-444.
Huang, S., S. Gruber, F. Stockmann, and W. Claupein. 2016. Dynamics of dormancy during seed development of oilseed rape (Brassica napus L.). Seed Sci. Res. 26(3): 245-253.
Hardegree, S.P.2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann. Bot. 97(6): 1115-1125.
Hawkins, K.K., P.S. Allen, and S.E. Meyer. 2017. Secondary dormancy induction and release in Bromus tectorum seeds: the role of temperature, water potential and hydrothermal time. Seed Sci. Res. 27(1): 12-25.
Légère, A., M.J. Simard, A.G. Thomas, and D. Pageau. 2001. Presence and persistence of volunteer canola in Canadian cropping systems. In Brighton Crop Protection Conference Weeds. 1: 143-148.
Lawson, A.N., R.C. Van Acker, and L.F. Friesen. 2006. Emergence timing of volunteer canola in spring wheat fields in Manitoba. Weed Sci. 54(5): 873-882.
Lutman, P.J.W., S.E. Freeman, and C. Pekrun. 2003. The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J. Agric. Sci. 141(2): 231-240.
Momoh, E.J.J., W.J. Zhou, and B. Kristiansson. 2002. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res. 42(6): 446-455.
Murdoch, A. J., E. H. Roberts, and C. O. Goedert.1989. A model for germination responses to alternating temperatures. Ann. Bot. 63(1): 97-111.
Maleki, K., Soltani, E., Alahdadi, I., & Ghorbani Javid, M. 2020. Evaluation of Primary Conditional Dormancy in Seeds of Oilseed Rape (Brassica napus) Produced in Golestan and Mazandaran Provinces. Iran. J. Seed Res 6(2): 31-43.
Pekrun, C., J.D.J. Hewitt, and P.J.W. Lutman. 1998. Cultural control of volunteer oilseed rape (Brassica napus). J. Agric. Sci. 130: 155–163.
Pritchard, H. W., P. B. Tompsett, and K. R. Manger.1996. Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds. Seed Sci. Res. 6(3): 127-135.
Pritchard, H. W., K. J. Steadman, J. V. Nash, and C. Jones.1999. Kinetics of dormancy release and the high temperature germination response in Aesculus hippocastanum seeds. J. Exp. Bot. 50(338): 1507-1514.
Qiu, J., Y. Bai, B. Coulman, and J.T. Romo.2006. Using thermal time models to predict seedling emergence of orchardgrass (Dactylis glomerata L.) under alternating temperature regimes. Seed Sci. Res. 16(4): 261-271.
Roberts, E. H, and S. Totterdell.1981. Seed dormancy in Rumex species in response to environmental factors. Plant Cell Environ. 4(2): 97-106.
Sauermann, W. 1993. Einflüsse auf den Glucosinolatgehalt—Ergebnisse 2-jähriger Untersuchungenaus den Land essortenversuchen. Raps. 11: 82–86.
Simard, M. J., A. Légère, D. Pageau, J. Lajeunesse, and S. Warwick.2002. The frequency and persistence of volunteer Canola (Brassica napus) in Québec cropping systems. Weed Technol. 16: 433-439.
Soltani, E., A. Soltani, S. Galeshi, F. Ghaderi-Far, and E. Zeinali. 2013. Seed bank modelling of volunteer oil seed rape: from seeds fate in the soil to seedling emergence. Planta Daninha. 31(2): 267-279.
Schlink, S., 1994. Ecology of germination and dormancy in oilseed rape (Brassica napus L.) and their importance for the survival of the seeds in soil. PhD dissertation, University of Gottingen, Germany.
Soltani, A., M.J. Robertson, B. Torabi, M. Yousefi-Daz, and R. Sarparast. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric. Forest Meteorol. 138(1-4): 156-167.
Soltani, E., S. Galeshi, B. Kamkar, and F. Akramghaderi. 2008. Modeling seed aging effects on response of germination to temperature in wheat. Seed Sci. Biotechnol. 2(1): 32-36.
Soltani, E., S. Gruber, M. Oveisi, N. Salehi, I. Alahdadi, and M.G. Javid. 2017. Water stress, temperature regimes and light control induction, and loss of secondary dormancy in Brassica napus L. seeds. Seed Sci. Res. 27(3): 217-230.
Soltani, E., C.C. Baskin, J.M. Baskin, A. Soltani, S. Galeshi, F. Ghaderi-far, and E. Zeinali. 2016. A quantitative analysis of seed dormancy and germination in the winter annual weed Sinapis arvensis (Brassicaceae). Botany. 94(4): 289-300.
Soltani, E., A. Soltani, and M. Oveisi. 2013. Modeling seed aging effect on wheat seedling emergence in drought stress: Optimizing germin program to predict emergence pattern. J. Crop Improv. 15(2): 147-160. (In Persian, with English Abstract)
Shayanfar, A., F. Ghaderifar, R. Behmaram, A. Soltani, and H.R. Sadeghipour.2018. Assessment of germination and secondary dormancy behaviours of lines and cultivars of canola. J. Crop. Improv. 19(4): 881-892. (In Persian, with English Abstract)
Weber, E.A., K. Frick, S. Gruber, and W. Claupein.2010. Research and development towards a laboratory method for testing the genotypic predisposition of oilseed rape (Brassica napus L.) to secondary dormancy. Seed Sci. Technol. 38(2): 298-310.
Wang, R., Y. Bai, and K. Tanino.2004. Effect of seed size and sub-zero imbibition-temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). J. Exp. Bot. 51(3): 183-197.