Abbas, S.H., I.M. Ismail, T.M. Mostafa, and A.H. Sulaymon. 2014. Biosorption of Heavy Metals: A Review. J. Chem. Sci Technol. 3(4): 74-102.
Aebi, H. 1984. Catalase in vitro. Method Enzymol. 105: 121-126.
Ahmad, A., S.S. Alghamdi, K. Mahmood, and M. Afzal. 2016. Fenugreek a multipurpose crop: Potentialities and improvements. Saudi J. Biol. Sci. 23(2): 300–310.
Amanifar, S., E. Vatankhah, Z. Toghranegar, and A. Akbari-Vahid. 2019. The effect of Mycorrhiza-Like fungus Piriformospora indica on some physiological and biochemical responses of Alfalfa (Medicago sativa L.) under water deficit stress. Water Soil Sci. 29(3): 1-250. (In Persian)
Amini, F., H.R. Baluchi, M. Movahedi Dehnavi, and M. Attarzadeh. 2016. Effects of different concentrations of heavy metals application on germination indices and seed vigor of Pinto bean (Phaseolus vulgaris L.). Iran J. Seed Sci. Res. 3 (2): 105-95. (In Persian)
Andrade, S.A.L., C.A. Abreu, M.N. Abred, and A.D.D. Silveria. 2004. Influence of lead addition on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl. Soil Ecol. 26: 123-137.
Appenroth, K.J. 2010 Definition of “heavy metals” and their role in biological systems. Pp 19-29. In I. Sherameti, and A. Varma (eds.). Soil heavy metals. Springer, Berlin, Heidelberg.
Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agron. J. 23:112-121.
Bagde, U.S., R. Prasad, and A. Varma. 2010. Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr. J. Biotechnol. 9: 9214-9226.
Bajaj, R., W. Hu, and Y. Huang, et al. 2015. The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Biol. Control. 90: 193-199.
Bakhtiarizade, M. and M.K. Souri. 2019. Beneficial effects of rosemary, thyme and tarragon essential oils on postharvest decay of Valencia oranges. Chem. Biol. Technol. Agri. 6(1):9. https://doi.org/10.1186/s40538-019-0146-3.
Baryla, A., P. Carrier, F. Franck, C. Coulomb, C. Sahut, and M. Havaux. 2001. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta. 212: 696–709.
Bates, L. S., R. P. Waldern, and I. D. Tear. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207.
Behtash, F., S.J. Tabatabaii, M.J. Malakouty, M.H. Sorour-Aldin, andSh. Ustan. 2010. Effect of cadmium and silicon on growth and some physiological aspects of Red Beet. J. Agric. Sci. Sustain. Prod. 2 (1): 53-67. (In Persian)
Ben Hamed, K., A. Castagna, E. Salem, A. Ranieri, and C. Abdelly. 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions, a comparison of leaf and root antioxidant responses. Plant Growth Reg.53: 185-194.
Bolandnazar, S., S. Khorsandi, and M. Adlipoor. 2016. Effect of cadmium and zeolite on growth characteristics of Cress (Lepidium sativum L.) and Radish (Raphanus sativus L.). J. Plant Prod. Technol. 8(1): 137-146. (In Persian)
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principles of protein dyebinding. Anal. Biochem. 72: 248-254.
Chandrasekar, D., K. Madhusudhana, S. Ramakrishna, and P.V. Diwan. 2006. Determination of DPPH free radical scavenging activity by reversed-phase HPLC: A sensitive screening method for polyherbal formulations. J. Pharm. Biomed. Anal. 40(2): 460-464.
Cheng, J., H. Qiu, Z. Chang, Z. Jiang, and W. Yin. 2016. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springer Plus. 5: 1290. https://doi.org/10.1186/s40064-016-2963-1.
Davey, M.W, E. Stals, B. Panis, J. Keulemans, and R.L. Swennen. 2005. High-throughput determination of malondialdehyde in plant tissues. Anal Biochem. 347: 201–207
Didwania, N., S. Jain, and D. Sadana. 2019. In vitro phytotoxic effects of cadmium on morphological parameters of Allium cepa. J. Biol. Sci. 12(1): 37-41.
Ekmekçi, Y., D. Tanyolac, and B. Ayhan. 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. plant physiol. 165(6): 600-611.
Fattahi, B., K. Arzani, M.K. Souri, and M. Barzegar. 2019. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Ind. Crop Prod. 138: 111584. https://doi.org/10.1016/j.indcrop.2019.111584
Fusconi, A., C. Gallo, and W. Camusso. 2007. Effects of cadmium on root apical meristems of Pisum sativum L, cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 632: 9-19.
Ghabooli, M., B. Khatabi, F.S. Ahmadi, M. Sepehri, M. Mirzaei, A. Amirkhani, J.V. Jorrín-Novo, and G.H. Salekdeh. 2013. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteome. 94: 289-301.
Ghori, N.H., T. Ghori, M.Q. Hayat, S.R. Imadi, A. Gul, V. Altay, and M. Ozturk. 2019. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol.16(3), 1807-1828.
Gill, S.S., N.A. Khan, and N. Tuteja. 2012. Cadmium at high dose pertubs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium Sativum L). J. Plant Sci, 182: 112-120.
Hajinia, S., M.J. Zarea, E. Mohammadi Goltapeh, and F. Rejali. 2011. Investigating the efficacy of endophytic fungus Piriformospora indica and Azospirillum strains on alleviation of detrimental effect of salt stress on wheat (Triticum aestivum cv. Sardari). Environ. Stress Crop Sci. 4(1): 21-31. (In Persian)
Hashemi, H., H. Oloumi, F. Rezanejad, and Kh. Kalantari. 2016. The effect of 24- Epibrassinolid on germination and tube growth of in vitro Petunia hybrida L. pollen under cadmium stress. J. Plant Res. 29(2): 451-460. (In Persian)
Hatamian, M., A. Rezaie Nejad, M. Kafi, MK. Souri, and K. Shahbazi. 2018. Interactions of Lead and Nitrate on growth characteristics of Ornamental Judas Tree (Cercis siliquastrum). Open Agric. 3: 386-392.
Hatamian, M., A. Rezaie Nejad, M. Kafi, MK. Souri, and K. Shahbazi. 2019. Growth characteristics of ornamental Judas tree (Cercis siliquastrum L.) seedling under different concentrations of lead and cadmium in irrigation water. Acta Sci.Pol-Hortoru. 18(2): 87-96.
He, Y., Z. Yang, M. Li, M. Jiang, F. Zhan, Y. Zu, T. Li, and Z. Zaho. 2017. Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environ Sci. Pollut. Res. 24(2):119.
Heidarpour, O., M.K. Souri, and R. Omidbaigi. 2013. Changes in content and constituents of essential oil in different plant parts of Lovage (Levisticum officinale Koch. Cv. Budakalaszi) cultivated in Iran. J. Essent. Oil Bear. Plant. 16(3):318-322.
Hui, F., J. Liu, Q. Gao, and B. Lou. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. J. Environ. Sci.37: 184-191.
Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments. Plant Signal. Behav. 7 (11): 1456–1466.
Jaouani, K., I. Karmous, M. Ostrowski, E. El Ferjani, A. Jakubowska, and A. Chaoui. 2018. Cadmium effects on embryo growth of pea seeds during germination: Investigation of the mechanisms of interference of the heavy metal with protein mobilization-related factors.J. Plant Physiol.226: 64-76.
Jisha, S., K.N. Anith, and K.K. Sabu. 2019. The protective role of Piriformospora indica colonization in Centella asiatica L. in vitro under phosphate stress. Biocatal. Agric. Biotechnol. 19:101088.
Jogawat, A., S. Saha, M. Bakshi, V. Dayaman, M. Kumar, M. Dua, A.Varma, R. Oelmüller, N. Tuteja, and Johri, A.K. 2013. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal. Behav. 8 (10): 1559-2324.
Karami, A., and M.J. Zarea. 2014. Physiological and nutritional responses of inoculated Alfalfa (Medicago sativa. cv hamedani) with the fungus Piriformospora indica and bacterium Azospirillum Spp under salt stress.J. Crop Prod. 7 (1): 109-129. (In Persian)
Kavi Kishor, P.B., S. Sangam, R.N. Amrutha, P. Sri Laxmi, K.R. Naidu, S.S. Rao Sreenath, K. J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88(3): 438-424.
Khan M.R., F.A. Mohiddin, M.N. Ejaz, and M.M. Khan. 2012. Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turk. J. Biol. 36: 161-169.
Khan, M.Y., V. Prakash, V. Yadav, D.K. Chauhan, S.M. Prasad, N. Ramawat, and S. Sharma. 2019. Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol. Biochem.142: 193-201.
Khatamipour, M., E. Piri, Y. Esmaeilian, and A. Tavassoli. 2011. Toxic effect of cadmium on germination, seedling growth and proline content of Milk thistle (Silybum marianum). Scholars Research Library. Ann. Biol. Res. 2 (5):527-532.
Khatib, M., M.H. Rashed Mohasel, A. Ganjali, and M. Lahouti. 2008. The Effects of different nickel concentration on some morpho-physiological characteristics of Parsley (Petroselinum crispum). Iran J. Field Crop Res. 2: 295-302. (In Persian)
Kochert, G. 1987. Carbohydrate determination by the phenolsulfuric acid method. In Helebus Cambrige Univ. Press, Cambridge.
Mac-Adam, J.W., C.J. Nelson, and R.E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol.99: 872-878.
Mohammadipour N., and M.K. Souri. 2019. Effects of different levels of glycine in the nutrient solution on the growth, nutrient composition and antioxidant activity of coriander (Coriandrum sativum L.). Acta Agrobotan. 72(1):1-9.
Mousavi, S.A., M. Oveysi, and A. Iranbakhsh. 2017. The effects of lead and cadmium contamination on seed germination of sorghum (Sorghum bicolor L.).Agron. Res. Semi Desert Reg. 14(3): 217-229. (In Persian)
Nakano, Y., and K. Asada. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydro ascorbate radical. Plant cell physiol. 28(1): 131-140.
Nouri, J., N. Khorasani, B. Lorestani, M. Karami, A.H. Hassani, and N. Yousefi. 2009. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential.Environ. Earth Sci. 59(2): 315-323.
Paunov, M., L. Koleva, A. Vassilev, J. Vangronsveld, and V. Goltsev. 2018. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int. J. Mol. Sci, 19(3): 787.
Prince, W. S., P. Senthil Kumar, K. D. Doberschutz, and V. Subburam. 2002. Cadmium toxicity in mulberry plants with special reference to the nutritional quality of leaves. J. Plant Nutr. 25: 689 –700.
Sanchez-Vallet, A., J.R. Mesters, and B.P. Thomma. 2015. The battle for chitin recognition in plant-microbe interactions. FEMS. Microbial Rev. 39(2):171-183.
Shahabivand, S., A. Parvaneh, and A.A. Aliloo. 2018. The cadmium toxicity in Helianthus annuus can be modulated by endosymbiotic fungus (Piriformospora indica). J. Genet Resour, 4(1): 44-55.
Shahabivand, S., A. Parvaneh, and A.A. Aliloo. 2017. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol. Environ. Saf. 145: 496-502.
Shahabivand, S., H. Zare-Maivan, E.M. Goltapeh, M. Sharifi, and A.A. Aliloo. 2012. The Effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem. 60: 53-58.
Siddhu, G., and M. A. Ali-Khan. 2012. Effects of cadmium on growth and metabolism of Phaseolus mungo. J. Environ. Biol. 33: 173-179.
Silinkard, K., and V.L. Singleton. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol Vitic, 28(1): 49-55.
Sirrenberg, A., C. Göbel, S. Grond, G. N. Czempinski, A. Ratzinger, P. Karlovsky, P. Santos, I. Feussner, and K. Pawlowski. 2007. Piriformospora indica affects plant growth by auxin production. Physiol. Plant. 131 (4): 581-589.
Souri, M.K., N. Alipanahi, M. Hatamian, M. Ahmadi, and T. Tesfamariam. 2018. Elemental Profile of Heavy Metals in Garden cress, Coriander, Lettuce and Spinach, Commonly Cultivated in Kahrizak, South of Tehran-Iran. Open Agric. 3(1): 32-37.
Souri, M.K., N. Alipanahi, and G. Tohidloo. 2016. Heavy metal content of some leafy vegetable crops grown with waste water in southern suburb of Tehran-Iran. Veg. Sci. 43(2):156-162.
Sun, C., J.M. Johnson, D. Cai, I. Sherameti, R. Oelmüller, and B. Lou. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167: 1009-1017.
Taghizadeh, M., and E. Solgi. 2016. Evaluation of lead stress on seedling growth stages and establishment of Bermuda grass. J. Plant Ecol. Conser. 4(8) 65-65. (In Persian)
Tayel, A.A., M.M. Gharieb, H.R. Zaki, and N.M. Elguindy. 2016. Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan. Int. J. Biol. Macro. 83: 277-281.
Vadassery, J., C. Ritter, Y. Venus, I. Camehl, A. Varma, B.Shahollari, O. Novák, and R. Oelmüller. 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol. Plant-Microbe Interact. 21(10): 1371-1383.
Varma, A., I. Sherameti, S. Tripathi, R. Prasad, A. Das, M. Sharma, and K. Rastogi. 2012. 13 The Symbiotic Fungus Piriformospora indica: Review. Pp 231-254. In B. Hock (ed.). Fungal Associations. Springer, Berlin, Heidelberg.
Varma A., S. Verma, N. Sahay, B. Butehorn, and P. Franken. 1999. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65(6): 2741-2744.
Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, T. Heier, R. Hückelhoven, C. Neumann, D. Von- Wettstein, and P. Franken. 2005. The Endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102(38):13386-13391.
Wani P.A., M.S. Khan, and A. Zaidi. 2012. Toxic effects of heavy metals on germination and physiological processes of plants. Pp 45-66. In A. Zaidi, P. Wani, M. Khan (Eds). Toxicity of heavy metals to legumes and bioremediation. Springer, New York.
Weiss, M., M.A. Selosse, K.H. Rexer, A. Urban, and F. Oberwinkler. 2004. Sebacinales, a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol. Res. 108(9):1003-1010.
Xu, L., C. Wu, R. Oelmüller, and W. Zhang. 2018. Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: more questions than answers. Fron. Microbiol. 9: 1646. https://doi.org/10.3389/fmicb.2018.01646
Yadav, V., N. Arif, S. Singh, P.K. Srivastava, S. Sharma, D.K. Tripathi, N. Dubey, and D.K. Chauhan. 2016. Exogenous mineral regulation under heavy metal stress: Advances and prospects. Biochem. Pharmacol. 5(220): 2167-0501.
Yang, Y.Z., F. Zha, J.M. Zhang, S.Q. Dong, and J.Q. Zhu. 2012. Effects of Pirformaspora indica on cotton resistance to waterlogged stress. Adv. J. Food Sci. Technol. 4: 413-416.