Document Type : Original Article

Authors

1 Department of Agronomy, Shahrekord University, Iran.

2 Department of Agronomy, Shahrekord University

3 Department of Biology, Islamic Azad University, Najafabad Branch, Iran.

4 Department of Organic Farming, BOKU University, Austria

Abstract

IIn order to evaluate the potential of germination and initial seedling growth of soybean seeds fed with zinc oxide nanoparticles, two experiments (in growth chamber and soil) were performed at Shahrekord University in 2020. The treatments in the maternal plant included different compounds of zinc (zinc oxide nanoparticles with sizes of 38, 59 nm and zinc chloride) and different concentrations (0, 50, 100, 200 and 500 mg/kg soil). With increasing the concentration of zinc oxide nanoparticles, especially 38 nm nanoparticles at a concentration of 200 mg/kg, germination percentage and germination rate (67 and 89%, respectively), radicle length and weight (133 and 356%, respectively), plumule length and weight (135 and 103%, respectively) and as a result, seedling vigor index increased (291%). Significant increase in chlorophyll a, chlorophyll b and carotenoids (28, 333 and 73%, respectively), plant height (41%), leaf area (66%), shoot weight (167%) of seedlings of soybeans fed with 200 mg/kg ZnO 38-nm was observed but at a concentration of 500 mg/kg of zinc compounds the toxic effects on soybean seedlings was observed. In general, it is concluded that feeding soybean plant with zinc oxide nanoparticles can be very effective in increasing the vigor of produced seed.

Keywords

Abdul- Baki, A., and J. Anderso. 1973. Vigour determination in soya bean by multiple criteria. Crop Sci. 10: 31-34.
Boonyanitipong, P., B. Kositsup, P. Kumar, S. Baruah, and J. Dutta. 2011. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int. J. Biosci. Biochem. Bioinform. 1: 282- 300.
Andrejić, G., G. Gajić, M. Prica, Ž. Dželetović, and T. Rakić. 2018. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in zn-stressed Miscanthus× giganteus plants. Photosynthetica. 56: 1249-1258.
Faizan, M., S. Hayat, and J. Pichtel. 2020. Effects of zinc oxide nanoparticles on crop plants: A perspective analysis. Sustain. Agric. Res. 41: 83-99.
Garma, T. 2011. Semiconductor nanowires and their field-effect devices. Ph.D. Thesis. Univ. of München, Germany.
García-López, J. I, F. Zavala-García; E. Olivares-Sáenz, R. H. Lira-Saldívar, B. C. Enrique Díaz, N. A. Ruiz-Torres, E. Ramos-Cortez, R. Vázquez-Alvarado, and G. Niño-Medina. 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agron. Basel. 8: 215. DOI: 10.3390/agronomy8100215.
Ghosh, M., A. Jana, S. Sinha, M. Jothiramajayam, A. Nag, and A. Chakraborty. 2016. Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antiodant defenses and cell- cycle arrest. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 807: 25- 32.
Ikic, I., M. Maric, S. Tomasovic, J. Gunjaca, Z. S. Atovic, and H. S. Arcevic. 2012. The effect of germination temperature on seed dormancy in creation- grown winter wheats. Euphytica. 188: 25- 34.
Li, X. Q., and W. X. Zhang. 2007. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C. 111: 6939-6946.
Lichtenthaler, H.K., and C. Buschman. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In R.E. Wrolstad (ed). Current Protocols in Food Analytical Chemistry John Wiley and Sons, Inc. New York.
Lotfifar, A., G. Akbari, A. Shirani Rad, S. Sadat Nouri, S. Mottaqi, and A. Nikoniaei. 2007. Effect of 1000-seed weight on seed germination capacity and field germination power in spring rapeseed cultivars (Brassica napus L.). Agric. Res. 7: 199-213. (In Persian with abstract English)
Masciangioli, T., and W. X. Zhang. 2003. Nanotechnology could substantially enhance environmental quality and sustainability through pollution prevention, treatment, and remediation.  Environ. Sci. Technol. 37: 102–108.
Pabalan, R. T., and F. P. Bertetti. 2001. Cation-exchange properties of natural zeolites. Rev. Mineral. Geochem. 45: 453-518.
Prasad, T., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, and K. Rajareddy. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35: 906- 927.
Rajput, V., S. Sushkova, T. Minkina, and A. Behal. 2019. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ. Geochem. Health. https://doi. Org/ 10.1007/ s10653- 019-00317-3.
Raskar, S. V. and S. L. Laware. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci.3: 467- 473.
Ronaghi, A., M. Chakralhosseini, and N. Karimian. 2002. The effect of phosphorus and iron on the growth and chemical composition of corn. J. Agric. Sci. Technol. 6: 53-66.
Seleiman, M. F., K. F. Almutairi, M. Alotaibi, A. Shami, B. A. Alhammad, and M. L. Battaglia. 2021. Nano-fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants. 10: 2.
Singh, N. B., N. Amist,  K. Yadav, D. Singh,  J. K. Pandey, and S. C. Singh. 2013. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J. Nanoeng. Nanomanuf. 3: 353-364.
Tarafdar, J. C., R. Raliya, H. Mahawar, and I. Rathore. 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). J. Sustain. Trop. Agric. Res. 3: 257-262.
Torabian, S., M. Zahedi, and A. Khoshgoftarmanesh. 2016. Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. J. Agr. Sci. Technol. 18: 1013-1025
Tymoszuk, A, and J. Wojnarowicz. 2020. Zinc oxide and zinc oxide nanoparticles impact on In Vitro germination and seedling growth in Allium cepa L. Materials 13: 2784. https://doi.org/10.3390/ma13122784.
Wang, M., Y. Yang, and W. Chen. 2018. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China. J. Environ. Qual. 47: 306-311.
Xiang L., , H. M. Zhao, Y. W. Li, X. P. Huang, X. L. Wu, T. Zhai, , Y. YuanQ. Y. Cai, and C. H. Mo. 2015. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 22: 10452–10462.
Yari, L., H. Afshar, M. Shakeri, A. Abbasian, and H. Sadeghi. 2014. The effect of potassium hydrogen phosphate on germination and seedling growth of rice. Seed & Plant Certification & Registration Institute, Karaj. 13: 1-4. (In Persian)
Yousefi-Tanha, A. 2020. Investigation of transfer and effects of metal oxide nanoparticles (zinc oxide and copper oxide) in soybean. Ph.D. Thesis. Univ. of Shahrekord, Faculty of Agriculture. Iran. (In Persian)
Yusefi-Tanha, E., S. Fallah, A. Rostamnejadi, and L.R. Pokhrel. 2020. Zinc oxide nanoparticles (ZnONPs) as nanofertilizer: Improvement on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 738: 140240. https://doi.org/10.1016/j.scitotenv.2020.140240