Quantification of Tolerance Thresholds of Ramlik (Ziziphus nummularia L.) Seed Germination to Salinity Stresses at Different Temperatures

Document Type : Original Article

Authors

1 Agricultural Sciences and Natural Resources University of Khuzestan

2 Department of Plant production of Genetics, Khuzestan University of Agricultural Sciences and Natural Resources.

3 Agricultural Sciences and Natural Resouces University of Khuzestan

Abstract

In order to investigate the combined effects of temperature and salinity stress on seed germination properties of ziziphus (Ramlik), a factorial experiment conducted at seed technology laboratory of Agricultural Sciences and Natural Resources University of Khuzestan in 2019. The experiment was arranged as complete block design with three raplications. First factor was salinity (0, 50, 100, 150, 200, 250 and 300 mM) and second factor was temperature (5, 10, 15, 20, 25, 30, 35 and 40 oC). Results of the experiment revealed that there was no seed germination in 5 oC, 10 oC at all salinity treatments. Seed germination and seedling growth were declined at all temperature treatments bythe increase in salinity concentrations. Salinity tolerance threshold of Ramlik at 25 OC was 173 mM but as temperature increased to 35 oC, it declined to 150 mM. The highest seed germination properties of Ramlik were observed at 25 oC. An increase in salinity led to a lower seed germination rate. As Ramlik seeds were capable to complete their germination at

Keywords


AbdulBaki, A.A., and J.D. Anderson. 1973. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13(6): 630-633.
Agrawal, R., S. Gupta, N.K. Gupta. S.K. Khandelwal, and R. Bhargava. 2013. Effect of sodium chloride on gas exchange, antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.). Photosynthetica. 51(1): 95-101.
Akath, S., and P.R. Meghwal. 2020. Socio-economic and horticultural potential of Ziziphus species in arid regions of Rajasthan India. Genet. Resour. Crop Evol. 67(5): 1301-1313.
AL-Shoaibi, A.A. 2020. Combined effects of salinity and temperature on germination, growth and gas exchange in two cultivars of Sorghum bicolor. J. Taibah Univ. Sci. 14(1): 812-822.
Bai, H., D. Xiao, B. Wang, D.L. Liu, P. Feng, and J. Tang. 2021. Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China plain. Int. J. Climatol. 41: 171-186.
Benech Arnold, R.L., M. Fenner, and P.J. Edwards.1991. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytol. 118(2): 339-347.
Bewley J.D. 1997. Seed germination and dormancy. The Plant Cell. 9(7): 1055–1066.
Bhatt, M.J., A. D. Patel, P.M. Bhatti, and A. N. Pandey. 2008. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). J. Fruit Ornam. Plant Res. 16(1): 383-401.
Blackport, R., and J. A. Screen. 2020. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 6(8): DOI: 10.1126/sciadv.aay2880.
Chandra, A.T.U.L., and I.C. Gupta. 1994. Arid Fruit Research. Scientific Publishers, Jodpur, India.
Esechie, H.A. 1994. Interaction of salinity and temperature on the germination of sorghum. J. Agron. Crop Sci. 172(3): 194-199.
Fernandez, I.C.D., E. G. Luque, F.G. Mercado, and J. M. Marrero. 2015. Germination responses of Limonium insigne (Coss.) Kuntze to salinity and temperature. Pak. J. Bot. 47(3): 807-812.
Hesami, A., L. Bazdar, and M.H. Shahriari. 2020. Effect of Soil Salinity on Growth, Proline, and Some Nutrient Accumulation in Two Genotypes Seedlings of Ziziphus Spina-christi (L.) Willd. Commun. Soil Sci. Plant Anal. 51(6): 804-815.
Hooda, P.S., S.S. Sindhu, P.K. Mehta, and V.P. Ahlawat. 1990. Growth, yield and quality of ber (Zizyphus mauritiana Lamk.) as affected by soil salinity. J. Hortic. Sci. 65(5): 589-593.
Isayenkov, S.V., and F.J. Maathuis. 2019. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 10. DOI: https://doi.org/10.3389/fpls.2019.00080
Karimian, V., and G. Heshmati. 2017. Evaluation effects of Tree and shrub species (ziziphus spina cristi, ziziphus numolaria and Astragalus fasciculifolius) on the Soil Surface Indices in Winter Rangelands (case Study: Khashab Stream Rangelands, Southern Kohgiluyeh and Boyerahmad). Iranian J. Range. Desert Res. 24(4): 730-741.
Khakdaman, H., A. Pourmeydani, and S. M. Adnani. 2007. Study of genetic variation in Iranian jujube (Zizyphus jujuba mill) ecotypes. Iranian J. Range. For. Plant Breed. Genet. Res. 14 (4): 202-214.
Khan, M.A., and M. Qaiser. 2006. Halophytes of Pakistan: characteristics, distribution and potential economic usages. (ed.). Pp 129-153. In M.A. Khan, B. Boer, G.S. Kust, and H.J. Barth. Sabkha ecosystems. Springer, Switzerland.
Khan, M.A., and I. A. Ungar. 1998. Seed germination and dormancy of Polygonum aviculare L. as influenced by salinity, temperature, and gibberellic acid. Seed Sci. Technol. 26(1):107-117.
Larsen, S.U., C. Bailly, D. Côme, and F. Corbineau. 2004. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Sci. Res. 14(1): 35-50.
Lin, J., X. Hua, X. Peng, B. Dong, and X. Yan. 2018. Germination responses of ryegrass (annual vs. perennial) seed to the interactive effects of temperature and salt-alkali stress. Front. Plant Sci. 9:1458.
Maraghni, M.G.M.N.M., M. Gorai, and M. Neffati. 2010. Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. S. Afr. J. Bot. 76(3): 453-459.
Mondoni, A., G. Rossi, S. Orsenigo, and R.J. Probert. 2012. Climate warming could shift the timing of seed germination in alpine plants. Ann. Bot. 110(1): 155-164.
Nimbalkar, M.S., N. V. Pawar, S.R. Pai, and G. B. Dixit. 2020. Synchronized variations in levels of essential amino acids during germination in grain Amaranth. Rev. Bras. Bot. 43(3): 481-491.
Noroozi, J., A. Talebi, M. Doostmohammadi, S. Manafzadeh, Z. Asgarpour, and G. M. Schneeweiss. 2019. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9(1): 1-12.
Saied, A.S., J. Gebauer, K. Hammer, and A. Buerkert. 2008. Ziziphus spina-christi (L.) Willd: a multipurpose fruit tree. Genet. Resour. Crop Evol. 55(7): 929-937.
Shahba, M.A., Y. L. Qian, and K.D. Lair. 2008. Improving seed germination of saltgrass under saline conditions. Crop sci. 48(2): 756-762.
Singh, A., A. S. Kumar, A.S. Datta, and R.K. Yadav. 2018. Evaluation of guava (Psidium guajava) and bael (Aegle marmelos) under shallow saline watertable conditionsIndian J. Agric. Sci. 88(5): 720-725.
Sivalingam, P.N., M.M. Mahajan, V. Satheesh, S. Chauhan, H. Changal, K. Gurjar, D. Singh, C. Bhan, S. Anandan, A. Marathe, and C. Ram. 2021. Distinct morpho-physiological and biochemical features of arid and hyper-arid ecotypes of Ziziphus nummularia under drought suggest its higher tolerance compared to semi-arid ecotype. Tree Physiol. 2063-2081.
Sohail, M., A. S. Saied, J. Gebauer, and A. Buerkert. 2009. Effect of salinity on Growth and Mineral Composition of Ziziphus spina-christi (L.) Willd. J. Agric. Rural Dev. Tropics Subtropics (JARTS). 110(2): 107-114.
Ungar, I.A. 1995. Seed germination and seed-bank ecology in halophytes. Pp. 599–628. In J. Kigel, and G. Galili (eds.). Seed development and germination. New York: Marcel Dekker Inc.
Verma, S.S., R. P. Verma, S. K. Verma, A. L. Yadav, and A. K. Verma. 2018. Responses of ber (Zizyphus mauritiana Lamk.) varieties to different level of salinity. Int J. Curr. Microbiol. Appl. 7(7): 580-91.
Walck, J.L., S.N. Hidayati, K.W. Dixon, K.E. Thompson, and P. Poschlod. 2011. Climate change and plant regeneration from seed. Glob. Change Biol. Bioenergy. 17(6): 2145-2161.
Zait, Y., I. Konsens, and A. Schwartz. 2020. Elucidating the limiting factors for regeneration and successful establishment of the thermophilic tree Ziziphus spina-christi under a changing climate. Sci. Rep. 10(1): 1-12.
Zait, Y., I. Shtein, and A. Schwartz. 2019. Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance. Tree physiol. 39(5): 701-716.
Zhang, R., K. Luo, D. Chen, J. Baskin, C. Baskin, Y. Wang, and X. Hu. 2020. Comparison of thermal and hydrotime requirements for seed germination of seven Stipa species from cool and warm habitats. Front. Plant Sci. 11: 560714.