Effect of seed priming on salinity tolerance of (Cassia fistula L.) at seed germination and seedling growth stages using digital image analysis

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan

2 Department of Plant production of Genetics, Khuzestan University of Agricultural Sciences and Natural Resources.

3 Department of Agronomy and Plant Breeding, Faculty of Agriculture , Khouzestan agricultural and natural resources university, khouzestan, Iran

4 Shahid Chamran University of Ahvaz

Abstract

Seed germination is one of the most important and basic stages of plant growth and development so it has great importance and effect on other stages of its growth. Cassia is a plant from the legume family and has many medicinal properties. Cassia propagation is done by seeds, but no study and report on the tolerance of these seeds to salinity stress in the country have been presented yet. Two factorial experiments were performed in a completely randomized design at the Seed Technology Laboratory of Agricultural Sciences and Natural Resources University of Khuzestan. In the first experiment, the effect of hormone priming treatment with gibberellin, halopriming with potassium nitrate, and hydro priming on Cassia seed germination was investigated. The results of this experiment showed that the highest seed vigor was obtained in the treatment of 50 mg/l gibberellin for 12 hours of priming. After selecting the best treatment (gibberellin 50 mg/l for 12 hours), germination characteristics of primed seeds compared with no primed seeds under salinity stress (0, 4, 8, 14, 16, and 20 dS/m). The results showed that seed tolerance to salinity stress at the germination stage increased significantly with seed priming. The highest seed vigor was observed in priming treatment at no salinity stress condition (339.89) while the lowest seed vigor of primed treatment was observed in 20 dS/m. Unprimed seeds could not withstand salinity stress beyond 4 dS/m.

Keywords


Ahmad, F.A., A. Kamal, F. Singh, F. Ashfaque, F. Alamri, S.M.H. Siddiqui, and M.I.R Khan. 2021. Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up‐regulation of antiporter genes. Plant Biol. 23:113-121.
Arora. N.K., 2019. Impact of climate change on agriculture production and its sustainable solutions. J. Environ. Sustain. 2: 95-96.
Atici, O., G. Agar, and P. Battal. 2003. Interaction between endogenous plant hormones and alpha-amylase in germinating chickpea seeds under cadmium exposure. Fresenius Environ. Bull., 12: 781-785.
Bala. S., U.K. Varshney, and A. Kumari. 2018. Effect of chloride and sulphate dominated salinity on minerals constituents of senna (cassia angustifolia vahl.). J. Plant Dev. 10:127-131.
Banerjee A., and A. Roychoudhury. 2018. Seed priming technology in the amelioration of salinity stress in plants. Pp 81-93. In A. Rakshi, and H.B. Singh (eds.) Advances in seed priming. Springer, Singapore.
Becerra-Vázquez, Á.G., R. Coates, S. Sánchez-Nieto, R. Reyes-Chilpa, and A. Orozco-Segovia. 2020. Effects of seed priming on germination and seedling growth of desiccation-sensitive seeds from Mexican tropical rainforest. J. Plant Res. 133: 855-872.
Bradford, K.J., J.J. Steiner, and S.E. Trawatha. 1990. Seed priming influence on germination and emergence of peper seed lots. Crop Sci. 30: 718-721.
Chen, X., R. Zhang, Y. Xing, B. Jiang, B. Li, X. Xu, and Y. Zhou. 2021. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PloS one, 16(1). p.e0245505.
Corwin, D.L. 2021. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 72: 842-862.
Danish, M., P. Singh, G. Mishra, S. Srivastava, K.K. Jha, and R.J. Khosa. 2011. Cassia fistula Linn. (Amulthus)-An important medicinal plant: A review of its traditional uses, phytochemistry and pharmacological properties. J Nat. Prod Plant Resour. 1: 101-118.
Das, K., and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53.
Digirolamo, G., and L. Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital. J. Agron. 7: 25.
Ebrahimi, E. 2021. Strategies to improve germination of Cassia fistula seeds and reduce its germination response to salinity stress. Master thesis. Agricultural Sciences and Natural Resources University of Khuzestan. Mollasani. Iran.
Ellis, R.H., and E.H. Roberts.1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9: 373-409
Fathizad, H., M.A.H. Ardakani, H. Sodaiezadeh, R. Kerry, and R. Taghizadeh-Mehrjardi. 2020. Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma. 365: 114233.
França-Neto, J.D.B., and F.C. Krzyzanowski. 2019. Tetrazolium: an important test for physiological seed quality evaluation. J. Seed Sci. 41: 359-366.
Gratão, P.L., A. Polle, P.J. Lea, and R.A. Azevedo. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481-494.
Hameed, A., M.Z. Ahmed, T. Hussain, I. Aziz, N. Ahmad, B. Gul, and B.L. Nielsen. 2021. Effects of Salinity Stress on Chloroplast Structure and Function. Cells. 10: 2023-2045.
Hardikar, S. A., and A.N. Pandey. 2011. Growth, water status and nutrient accumulation of seedlings of Cassia fistula L. in response to soil salinity. Anales de biología. 33: 1-11.
Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192: 38-46.
International Seed Testing Association. 2017. International rules for seed testing. Rules. Zürichstr. Bassersdorf, Switzerland.
Isayenkov Stanislav, V., and J.M. Frans Maathuis. 2019. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 10: 1-11.
JiménezAlfaro, B., F.A. Silveira, A. Fidelis, P. Poschlod, and L.E. Commander. 2016. Seed germination traits can contribute better to plant community ecology. J. Veg. Sci. 27: 637-645.
Jisha, K.C., K. Vijayakumari, and J.T. Puthur. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35:1381-1396.
Khayamim, S., R. Tavakol Afshari, S.Y. Sadeghian, K. Poustini, F. Roozbeh, and Z. Abbasi. 2014. Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. J. Agric. Sci. Technol. 16:779-790.
Lamichhane, J.R., P. Debaeke, C. Steinberg, M.P. You, M.J. Barbetti, and J.N. Aubertot. 2018. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant and Soil. 432. 1-28.
Leist, N., S. Krämer, and A. Jonitz. 2003. ISTA working sheets on tetrazolium testing. International Seed Testing Association.
Li, Z., G.Y. Lu, X.K. Zhang, X.S. Zou, Y. Cheng, and P.Y. Zheng. 2010. Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (Brassica napus L.). Seed Sci and Technol. 38: 432-440.
Loutfy, N., Y. Sakuma, D.K. Gupta, and M. Inouhe. 2020. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. J. Plant Res.133: 549-570.
Maguire, M.P. 1962. Variability in length and arm ratio of the pachytene chromosomes of corn. Cytologia. 27: 248-257.
Moula, I., O. Boussadia, G. Koubouris, M.B. Hassine, W. Boussetta, M.C. Van Labeke, and M. Braham. 2020. Ecophysiological and biochemical aspects of olive tree (Olea europaea L.) in response to salt stress and gibberellic acid-induced alleviation. S. Afr. J. Bot. 132: 38-44.
Parihar, P., S. Singh, R. Singh, V.P. Singh, and S.M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22: 4056-4075.
Parihar, P., S. Singh, R. Singh, V.P. Singh, and S.M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22: 4056-4075.
Pawar, A.V., and S.G. Killedar. 2017. Uses of Cassia fistula Linn as a medicinal plant. Int. J. Adv. Res. Dev. 2:85-91.
Rahimi, A. 2013. Seed priming improves the germination performance of cumin (Cuminum syminum L.) under temperature and water stress. Ind. Crops Prod. 42: 454-460.
Raven, P.H., and D.L. Wagner. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. 118:1-6.
Roychoudhury, A., and M. Chakraborty. 2013. Biochemical and molecular basis of varietal difference in plant salt tolerance. Annu. Res. Rev. Biol.3: 422-454.
Saeed, T., A. Shahzad, and S. Sharma. 2020. Studies on single and double layered biocompatible encapsulation of somatic embryos in Albizia lebbeck and genetic homogeneity apraisal among synseed derived lines through ISSR markers. Plant Cell Tissue Organ. 140: 431-445.
Sauer, D.B., and R. Burroughs. 1986. Disinfection of seed surfaces with sodium hypochlorite. Phytopathol. 76: 745-749.
Scott, S.J., R.A. Jones, and W. Williams. 1984. Review of data analysis methods for seed germination 1. Crop Sci. 24: 1192-1199.
Seethalakshmi, S., R. Umarani, and M. Djanaguiraman. 2022. Gibberellic acid biosynthesis during dehydration phase of priming increases seed vigour of tomato. Plant Growth Regul. 97: 1-8.
Shah, T., S. Latif, F. Saeed, I. Ali, S. Ullah, A.A. Alsahli, S. Jan, and P. Ahmad. 2021. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 33: 1-8.
Singh, H., R.K. Jassal, J.S. Kang, S.S. Sandhu, H. Kangand, and K. Grewal. 2015. Seed priming techniques in field crops-A review. Agric. Rev. 36(4): 251-264.
Sisodia, A., M. Padhi, A.K. Pal., K. Barman, and A.K. Singh. 2018. Seed priming on germination, growth and flowering in flowers and ornamental trees. Pp 263-288. In A. Rakshi, and H.B. Singh (eds.) Advances in Seed Priming. Springer, Singapore.
Soltani, E., F. Ghaderi-Far, C. Baskin, and J.M. Baskin. 2015. Problems with using mean germination time to calculate rate of seed germination. Aust. J. Bot. 63: 631-635.
Tiwari, T.N., and D.K. Agarwal. 2021. The effect of seed priming in chickpea under sodic soil. Legum. Res. 34: 99-104.
Tsegay, B.A., and B. Gebreslassie. 2014. The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr. J. Plant Sci. 8: 225-231.
Uçarlı, C., 2020. Effects of salinity on seed germination and early seedling stage. P. 211-232. In Wang, D. Y. Chen. S. Saud. C. Wu. S. Fahad (ed.) Abiotic Stress in Plants. Springer.
Vishal, B., and P.P. Kumar. 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front. Plant Sci. 9:1-15.
Waqas, M., N.E. Korres, M.D. Khan, A.S. Nizami, F. Deeba. I. Ali, and H. Hussain. Advances in the concept and methods of seed priming. Pp 11-41. In M. Waqas, N. E. Korres, M.D. Khan, A.S. Nizami, F. Deeba, I. Ali, and H. Hussain (eds.) Priming and pretreatment of seeds and seedlings. Springer, Singapore.
Yücel, N.C., and E. Heybet. 2016. Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim. Slov. 63:738-746.
Zhang, S., J. Hu, Y. Zhang, X.J. Xie, and A. Knap. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res. 58: 811-815.