Document Type : Original Article

Authors

1 Assistant Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agriculture Engineering, Razi University, Kermanshah, Iran

2 Department of agronomy and plant breeding, campus of agriculture and natural resources, Razi university, Kermansha, Iran

3 Ph.D student, Department of Production Engineering and Plant Genetics, Faculty of Science and Agriculture Engineering, Razi University, Kermanshah, Iran

Abstract

in this study, the effect of silver nanoparticles and humic acid on some morphological characteristics of quinoa seedlings under drought stress was investigated. The experiment was performed as a factorial experiment in a completely randomized design with three replications. The experiment consisted of three levels of silver nanoparticles (0, 10 and 20 mg L-1 AgNPs), three levels of humic acid (0, 100 and 300 mg L-1) and three levels of drought stress (0, -6 and -12 bar). In this study, Titicaca cultivar was used. The highest amount of seed vigor and seed germination rate were observed in the highest level of AgNPs and humic acid, which indicates the positive effect of AgNPs and humic acid on germination percentage, germination rate and quinoa seed vigor. According to the obtained results, drought stress led to a decrease in germination percentage and growth characteristics of quinoa seeds. AgNPs and humic acid had a positive effect on germination and growth characteristics of quinoa seedlings under drought stress conditions compared to control treatment. With increasing the concentration of AgNPs and humic acid, the amount of proline, soluble sugars, total phenol, flavonoids and catalase activity under drought stress increased, indicating the positive role of AgNPs and humic acid to increase drought tolerance in quinoa. Therefore, the use of humic acid at a concentration of 300 mg L-1 along with 20 mg L-1 AgNPs is recommended to improve germination and seed growth of quinoa under drought stress conditions

Keywords

Abbasi Khalaki, M., M. Moameri, B. Asgari Lajayer, and T. Astatkie. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul. 93(1): 13–28.
Abdul-Baki, A.A, and J.D, Anderson. 1973. Vigor Determination in Soybean Seed by Multiple Criteria. Crop Sci. 13(6): 630-633.
Adam Y.A.A., M.E.H. Ibrahim, G. Zhou, G. Zhu, A.M.I. Elsiddig, M.S.E. Suliman, S.B.M. Elradi, and E.G.I. Salah. 2022. Interactive Impacts of Soil Salinity and Jasmonic Acid and Humic Acid on Growth Parameters, Forage Yield and Photosynthesis Parameters of Sorghum Plants. S. Afr. J. Bot. 146(1): 293-303.
Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105(1): 121-126.
Akhtar, N., and N. Ilyas. 2022. Role of nanosilicab to boost the activities of metabolites in Triticum aestivum facing drought stress. Plant and Soil. Doi: 10.1007/s11104-021-05285-1.
Altaf, M.A., R. Shahid, M.X. Ren, S. Naz, M.M. Altaf, L.U. Khan, R.K. Tiwari, M.K. Lal, M.A. Shahid, R. Kumar, M.A. Nawaz, M.S. Jahan, B.L. Jan, and P. Ahmad. 2022. Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System. Antioxidants. 11(2): 1-16.
Arslan, E. G., Agar, and M. Aydin. 2021. Humic Acid as a Biostimulant in Improving Drought Tolerance in Wheat: The Expression Patterns of Drought-Related Genes. Plant Mol. Biol. Rep. 39(10): 508–519.
Azadbakht, F., M. Amini Dehagh, and Kh. Ahmadi.  2018. Effect of Humic Acid and Folic Acid on Seed Germination Properties of Echinacea Purpurea under Salt Stress Conditions. Iran. J. Seed Res. 8(28): 33-43.
Bai, Y., S. Xiao, Z. Zhang, Y. Zhang, H. Sun, K. Zhang, X. Wang, Z. Bai, C. Li, and L. Liu. 2020. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. Peer J. 8(1): 1-29.
Banan, A., M.R. Kalbassi, M. Bahmani, E. Sotoudeh, S.A. Johari, M.A. Jonathan, and A.S. Kolok. 2020. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). Environ. Sci. Pollut. Res. 27(10): 10671–10678.
Bates, L.S., R.P. Waldern, and I.D. Teave. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39(1): 205-207.
Bayat, H., F. Shafie, M.A. Aminifard, and S. Daghighi. 2021. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. 279(1): 1-12.
Bayati, P., H. Karimmojeni, J. Razmjoo, M. Pucci, G. Abate, T.C. Baldwin, and A. Mastinu. 2022. Physiological, Biochemical, and Agronomic Trait Responses of Nigella sativa Genotypes to Water Stress. Sci. Hortic. 8(3): 1-18.
Bayramzadeh, V., E. Mortazavi, M.H. Davoodi, Sh. Kheiri, and S.Kh. Hossein Ashrafi. 2018.  The durability of negative effects of silver nanoparticles on seed germination and growth characteristics of Scots pine (Pinus sylvestris L.) in soil. Iranian J. Forest Poplar Res. 26(1): 1-11. (In Persian)
Chen, D., Zw. Meng, and Yp. Chen. 2021. Effect of humic acid on seedling growth and trace metal accumulation of pak choi (Brassica chinensis L.) cultivated on molybdenum slag-spiked soil. Environ. Sci. Pollut. Res. 28(5): 6122–6131.
Chen, Q., Z. Qua, G. Ma, W. Wanga, J. Daia, M. Zhanga, Z. Weib, and Z. Liua. 2022. Humic acid modulates growth, photosynthesis, and hormone and osmolytes system of maize under drought conditions. Agric. Water Manag. 263. Doi: 10.1016/j.agwat.2021.107447.
Dashab, S., and H. Omidi. 2021. Effects of hydro- and bio-priming on some physiological and biochemical characteristics of quinoa (Chenopodium quinoa) seedlings under drought stress. Iran. J. Plant Physiol. 11(3): 3659-3670.
Ebrahimi, M., and E. Miri Karbasak. 2016. Investigation effect of humic acid on germination, seedling growth and Photosynthesis pigments of medicinal plant Isabgol (Plantago ovata Forssk).  Iran. J. Seed Res. 3(3): 35-46.
Fathi, Z., R.A. Khavari Nejad, H. Mahmoodzadeh, and T. Nejad Satari. 2017. Investigating of a wide Range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J. Plant Prod. Sci. 57(3): 228-236.
Gad, M., H. Chao, H. Li, W. Zhao, G. Lu, and M. Li. 2021. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. Front. Plant Sci. 11(1): 1-10.
Ghani, M.I., S. Saleem, S.A. Rather, M.S. Rehmani, S. Alamri, V.D. Rajput, H.M. Kalaji, N. Saleem, T.A. Sial, and M. Liu. 2022. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere. 289(1): 1-12.
Ghavam. M. 2019. Effect of silver nanoparticles on tolerance to drought stress in Thymus daenensis Celak and Thymus vulgaris L. in germination and early growth stages. Environ. Stresses Crop Sci. 12(2): 555-556. (In Persian, with English Abstract)
Gholami, Sh., M, Amini Dehaghi, and A.R, Rezazadeh. 2022. Effect of different concentrations of selenium on germination characteristics and proline content of quinoa (Chenopodium quinoa willd) under drought stress. Environ. Stresses Crop Sci. 14(4): 1029-1040. (In Persian, with English Abstract)
Han, Y., Z. Hou, X. Zhang, K. Yan, Z. Liang, and Q He. 2022. Important changes in germination, seedling tolerance, and active components content due to drought stress on three licorice (Glycyrrhiza) species. Ind. Crops Prod. 175(1): 1-11.
Hunter, E.A., C.A. Glasbey, and R.E.L. Naylor. 1984. The analysis of data from germination tests. J. Agric. Sci. 102(1): 207-213.
Irigoyen, J.J., D.W. Emerich, and M. Sanchez-Diaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 84(1): 55-60.
Karimi Afshar, A., A. Baghizadeh, and Gh. Mohammadi-Nejad. 2021. Screening of Iranian Cumin (Cuminum cyminum L.) Ecotypes under Normal Moisture and Drought Conditions using Tolerance Indices. J. Ethno-Pharmaceutical Prod. 2(1):17-22.
Krizek, D.T., G.F. Kramer, A. Upadhyaya, and R.M. Mirecki. 1993. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiol. Plant. 88(2): 350-358.
Li, H., H. Yue, J. Xie, J. Bu, L. Li, X. Xin, Y. Zhao, H. Zhang, L. Yang, J. Wang, and X. Jiang. 2021. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Sci. Rep. 11(1): 1-17.
Liopa-Tsakalidi, A., G. Kaspiris, G. Salahas, and P. Barouchas. 2012. Effect of salicylic acid (SA) and gibberellic acid (GA3) pre-soaking on seed germination of stevia (Stevia rebaudiana) under salt stress. J. Med. Plant Res. 6(3): 416-423.
Manaa, A., R. Goussi, W. Derbali, S. Cantamess, J. Essemin, and R. Barbato. 2021. Photosynthetic performance of quinoa (Chenopodium quinoa Willd.) after exposure to a gradual drought stress followed by a recovery period. Biochim. Biophys. Acta - Bioenerg. 1862(5): 1-13.
Meda, A., C.E. Lamien, M. Romito, J. Millogo, and O.G. Nacoulma. 2005. Determination of the total phenolic, flavonoid and pralin contents in Burkina Fasan honey, as well as their scavenging activity. Food Chem. 91(3): 571-577.
Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon. 7(2): 1-11.
Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon. 7(2): 1-11.
Nguyen, D.T.C., H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, L.G. Bach, T.D. Nguyen, and T.V. Tran. 2021. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J. Hazard. Mater. 420(1): 1-16.
Pagter, M., C. Bragato, M. Malagoli, and H.J. Brix. 2009. Osmotic and ionic effects of NaCl and Na2So4 salinity on Phragmites australis. Aquat. Bot. 90(1): 43-51.
Parveen, A., and S. Rao. 2015. Effect of Nanosilver on Seed Germination and Seedling Growth in Pennisetum glaucum. J. Clust. Sci. 26(3): 693–701.
Ranal, M.A, and D.G. Santana. 2006. How and Why to Measure the Germination Process? Rev. Bras. Bot. 29(1): 1-11.
Rao, S., and G.S. Shekhawat. 2016. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech. 6(2): 1-12. DoI: 10.1007/s13205-016-0550-3.
Sales, E., E. Cañizares, C. Pereira, M.A. Pérez-Oliver, S.G. Nebauer, I. Pavlović, O. Novák, J. Segura, and I. Arrillaga. 2022. Changing Temperature Conditions during Somatic Embryo Maturation Result in Pinus pinaster Plants with Altered Response to Heat Stress. Int. J. Mol. Sci. 23(3): 1-16.
Savassa, S.M., H. Castillo-Michel, A.E. Pradas Del Real, J. Reyes-Herrera, J.P.R. Marques, and H.W.P. Carvalho. 2021. Ag nanoparticles enhancing Phaseolus vulgaris seedling development: understanding nanoparticle migration and chemical transformation across the seed coat. Environ. Sci. Nano. 8(7): 493-501.
Shaltout, K., M. Motawee, D. Ahmed, and M. EL- Etreby. 2022. Effect of Foliar Spray with K and Mn on the Growth of Swietenia mahagoni (L.) Jacq. Under Different Drought Levels. J. Bas. Environ.Sci. 9(1): 1- 11
Shen, J., MJ. Guo, Y.G. Wang, X.Y. Yuan, Y.Y. Wen, X.E. Song, S.Q. Dong, and P.Y. Guo. 2020. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav. 15(8): 1-13.
Shi, P., and M. GU. 2020. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response salt stress. BMC Plant Biol. 20(1): 1-15.
Yañez-Yazlle, M.F., N. Romano-Armada, M.M. Acrechede, V.B. Rajal, and V.P. Irazusta. 2021. Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicol. Environ. Saf. 218(1): 1-11.
Yigider, E., M. Taspinar, M. Aydin, and G. Agar. 2021. Humic acid effects on retrotransposon polymorphisms caused by zinc and iron in the maize (Zea mays L.) genome. Cereal Res. Commun. 49(2): 193–198.
Zhou, X., X. Jia, Zh. Zhang, K. Chen, L. Wang, H. Chen, Z. Yang, Ch. Li, and L. Zhao. 2022. AgNPs seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage AXiaoding. Sci. Total Environ. 808(1): 1-16.