Improving seed germination, growth, and biochemical characteristics of corn seedlings via the application of iron oxide nanoparticles synthesized from oregano (Origanum vulgare)

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil Iran.

2 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

TIn order to evaluate the effect of iron nanooxide synthesized from oregano on germination, growth and biochemical characteristics of corn seedlings, an experiment was carried out in a randomized complete block design with three replications. Experimental factors included synthesized iron oxide nanoparticles and the application methods of iron oxide nanoparticles. The results showed that iron oxide nanoparticles had a significant effect on germination, growth, and biochemical characteristics of seedlings. The highest germination rate, vigor index, seedling dry weight, and length were achieved with the application of 240 mg L-1 of iron oxide nanoparticles. Among the nanoparticle application methods, seed priming compared to the method of adding them to the planting medium had a greater effect on improving germination, growth, and increasing the vigor index. Using 240 mg L-1 of iron oxide nanoparticles as priming resulted in the highest germination percentage, germination synchrony index, mean daily germination, and the lowest MGT. In the case of adding nanoparticles to the planting medium, although it had less effect than the priming method, adding 360 mg L-1 of iron oxide nanoparticles to the planting medium also caused a significant increase in corn germination. The use of different concentrations of iron oxide nanoparticles in both methods of nanoparticle application caused a significant increase in the activity of antioxidant enzymes in seedlings. Therefore, the use of a concentration of 240 mg L-1 of iron oxide nanoparticles as a priming can be suggested to improve germination, growth, and biochemical characteristics of seedlings.

Keywords


Abbasi Khalaki, M., M. Moameri, B. Asgari Lajayer, and T. Astatkie. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant. Growth. Regul. 93(1): 13-28.
Abbasifar, A., F. Shahrabadi, and B. ValizadehKaji. 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant. Nut. 43 (8): 1104-1118.
Aebi, H. 1984. Catalase in vitro. Methods in enzymology. 105: 121-126.
Ali, M., S. Afzal, A. Parveen, M. Kamran, M.R. Javed, G.H. Abbasi, Z. Malik, M. Riaz, S. Ahmad, M. S. Chattha, M. Ali, Q. Ali, M.Z. Uddin, M. Rizwan, and S. Ali. 2021. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant. Physiol. Bio. 158: 208-218.
Amodeo, G., R. Giacometti, F. Spagnoletti, P.R. Santagapita, and M. Perullini. 2022. Eco-friendly routes for obtaining nanoparticles and their application in agro-industry. Nano. Agro. Agri.  Academic Press. p. 49-62.
Aslani, M., and M.K. Souri. 2018. Growth and quality of green bean (Phaseolus vulgaris L.) under foliar application of organic-chelate fertilizers. Open. Agric. 3 (1): 146-154.
Babaei, K., M. Tajbakhsh, and A. Siosemardeh. 2019. Effect of priming and sowing date of seed on growth indices of plant and yield and yield components of seed of maize single cross 260 (Fajr). Plant. Prod. Tech. 11 (2): 193-209. (in Persian with English abstract).
Bolandi Amoghin, M., P. Sheikhzadeh, S. Khomary, and N. Zare. 2020. Comparison the effects of different of seed priming techniques on improving germination and antioxidant enzymes activity in borage seedlings. Iranian. J. Seed. Sci. Res. 7 (3): 279-294. (in Persian with English abstract).
Chance, B., and A.C. Maely. 1955. Assay of catalase and peroxidase. Methods Enzymol. 2: 764-775.
Chang, C.J., and C.H. Kao. 1998. H2O2 metabolism during senescence of rice leaves: changes in enzyme activities in light and darkness. Plant. Growth. Regul. 25 (1): 11-15.
Chojnowski, M., F. Corbineau, and D. Côme. 1997. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed. Sci. Res. 7 (4): 323-332.
Ellis, R.H., and E.H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed. Sci. Technol. 9: 373-409.
ElTemsah, Y.S., and E.J. Joner. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Env. Toxicol. 27 (1): 42-49.
Esper Neto, M., D.W. Britt, K.A. Jackson, C.F. Coneglian, T.T. Inoue, and M.A. Batista. 2021. Early growth of corn seedlings after seed priming with magnetite nanoparticles synthetised in easy way. Acta. Agric. Scandi. Sec-B. Soil. Plant. Sci. 71(2): 91-97.
Finch-Savage, W.E., and S. Footitt. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68 (4): 843-856.
Golbashy, M., M. Ebrahimi, S. Khavari Khorasani, and R. Choukan. 2010. Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. Afr. J. Agric. Res. 5: 2714-2719.
Golshahi, S., A. G. Ahangar, N. Mir, and M. Ghorbani. 2018. A comparison of the use of different sources of nanoscale iron particles on the concentration of micronutrients and plasma membrane stability in sorghum. J. Soil. Sci. Plant. Nut. 18 (1): 236-252.
Guha, T., K.V.G. Ravikumar, A. Mukherjee, A. Mukherjee, and R. Kundu. 2018. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant. Physiol. Bio. 127: 403-413.
Hoseinpur Askarian, E., A. Abbasi Surki, and Danesh Shahraki. A. 2019. Effect of seed priming with ZnSO4 and FeSO4 on dormancy break optimization and germination traits of shallot (Allium hirtifolium). Iranian. J. Seed. Res. 6 (1): 33-49. (in Persian with English abstract).
Hunter, E.A., C.A. Glasbey, and R.E.L. Naylor. 1984. The analysis of data from germination tests. J. Agric. Sci. 102 (1): 207 -213.
Jalil, S. B. M., and D. M. Movahedi. 2012. Effect of zinc and iron foliar application on soybesn seed vigour grown under drought stress. Elec. J. Crop. Prod. 5 (1): 19-35. (in Persian with English abstract).
Ju, W., L. Liu, X. Jin, C. Duan, Y. Cui, J. Wang, M. Dengke, W. Zhao, Y. Wang, and L. Fang. 2020. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere. 254 (126724): 1-13.
Kar, M., and D. Mishra. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant. Physiol. 57 (2): 315-319.
Karimi, N., M. Behbahani, G. Dini, and A. Razmjou. 2018. Green synthesis of ZnO nanoparticles using extract of edible and medicinal plant (Allium jesdianum). Razi. J. Med. Sci. 25 (9): 1-7. (in Persian with English abstract).
Kasote, D. M., J. H. J. Lee, G. K. Jayaprakasha, and B. S. Patil. 2019. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chem. Eng. 7 (5): 5142-5151.
Kornarzyński, K., A. Sujak, G. Czernel, and D. Wiącek. 2020. Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci. Rep. 10 (1): 1-10.
Kouhbanani, M. A. J., N. Beheshtkhoo, S. Taghizadeh, A. M. Amani, and V. Alimardani. 2019. One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Adv. Nat. Sci.: Nano. Sci. Nanotechnol. 10 (1): 1-6.
Li, H., H. Yue, J. Xie, J. Bu, L. Li, X. Xin, Y. Zhao, H. Zhang, Li. Yang, J. Wang, and X. Jiang. 2021. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Sci. Rep. 11: 1-16.
Lin, J., B. Su, M. Sun, B. Chen, and Z. Chen. 2018. Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology.  Sci. Total. Env. 627: 314-321.
Maharramov, A. M., U. A. Hasanova, I. A. Suleymanova, G. E. Osmanova, and N. E. Hajiyeva. 2019. The engineered nanoparticles in food chain: Potential toxicity and effects. SN. Appl. Sci. 1 (11): 1362.
Maswada, H. F., M. Djanaguiraman, and P. V. V. Prasad. 2018. Seed treatment with nano‐iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agron. Crop Sci. 204 (6): 1-11.
Mezginezhad, Z., M. Ghaderi, Z. Alizde, and A. Izanloo. 2019. Effect of Iron Oxide and Zinc Oxide Nanoparticles of on Callus Viability of Seedless Barberry. J. Crop. Breed. 11 (30): 198-205.
Mehta, B. K., M. Chhajlani, and B. D. Shrivastava. 2017. Green synthesis of silver nanoparticles and their characterization by XRD. Int. J. Phys.: Conf. Ser. 836 (1): 1-4.
Mimmo, T., R. D. Del-Buono, N. Terzano Tomasi, G. Vigani, C. Crecchio, R. Pinton, G. Zocchi, and S. Cesco. 2014. Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur. J. Soil. Sci. 65 (5): 629-642.
Miri-Hesar, K., A. Dadkhodae, S. Dorostkar, and B. Heidari. 2019. Differential activity of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought stress. Not. Sci. Biol. 11 (2): 266-276.
Mirshekari, B. 2012. Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turk. J. Agric. For. 36 (1): 27-33.
Muhammad, I., M. Kolla, R. Volker, and N. Günter. 2015. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. J. Plant. Nut. 38 (12): 1803-1821.
Nair, A. S., T. K. Abraham, and D. S. Jaya. 2008. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. J. Env. Biol. 29 (5): 689-691.
Najafi Disfani, M., A. Mikhak, M. Z. Kassaee, and A. Maghari. 2017. Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch. Agron. Soil. Sci. 63 (6): 817-826.
Nejadalimoradi, H., F. Nasibi, K. M. Kalantari, and R. Zanganeh. 2014. Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agri. Commun. 2 (1): 23-30.
Nozohor, Y., M. H. Rasolifard, and N. Ghahremanigermi. 2018. Evaluation of antibacterial properties of oregano essence on pathogenic bacteria isolated from hospital infections. J. Ilam. Uni. Med. Sci. 25 (5): 154-160. (in Persian with English abstract).
Ocvirk, D., M. Špoljarević, M. Kristić, J. T. Hancock, T. Teklić, and M. Lisjak. 2021. The effects of seed priming with sodium hydrosulphide on drought tolerance of sunflower (Helianthus annuus L.) in germination and early growth. Ann. Appl. Biol. 178 (2): 400-413.
Patiño-Ruiz, D., L. Sánchez-Botero, L. Tejeda-Benitez, J. Hinestroza, and A. Herrera. 2020. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Env. Nanotechnol., Monit. Manag. 14 (100377): 1-10.
Pawar, V. A., and S. L. Laware. 2018. Seed priming: A critical review. Int. J. Sci. Res. Biol. Sci. 5(5): 94-101.
Rostamizadeh, E., A. Iranbakhsh, A. Majd, S. Arbabian, and I. Mehregan. 2020. Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. J. Nanostruct. Chem. 10 (2): 125-130.
Saadat, F., and S. M. R. Ehteshami. 2016. Effect of seed coating with growth promoting bacteria and micronutrients on germination characteristics of corn. Iranian. J. Seed Sci. Res. 3 (2): 81-94. (in Persian with English abstract).
Seirafy, H., and S. Sobhanirad. 2017. Effects of oregano (Origanum vulgare) and thyme (Thymus vulgaris) oils on growth performance and blood parameters in Holstein suckling calves. Iranian. J. Appl. Anim. Sci. 7 (4): 585-593. (in Persian with English abstract).
Sheikhbaglu, R., M. Sedghi, H. Salehian, and S. Rahimzadeh. 2014. Spraying effect of maternal plants with nano-iron oxide on germination indices and electrical conductivity of produced soybean seeds. Int. J. Bio. Sci. 5 (11): 22-27.
Talei, D., N. Sartipnia, and F. Farahani. 2018. Impact of Nano-Fe fertilizer rates on germination traits and protein pattern of three Mellisa offisinalis species. Hortic. Plant. Nut. 1 (1): 59-68. (in Persian with English abstract).
Tavosi, F., R. Ghafarzadegan, S. A. Mirshokraei, and R. Hajiaghaee. 2018. Green synthesis of iron nano particles using Mentha longifolia L. extract. J. Med. Plant. 17 (66): 135-144. (in Persian with English abstract).
Vashisth, A., and S. Nagarajan. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant. Physiol. 167 (2): 149-156.
Waqas Mazhar, M., M. Ishtiaq, M. Maqbool, R. Akram, A. Shahid, S. Shokralla, H. Al-Ghobari, A. Alataway, A.Z. Dewidar, A. M. El-Sabrout, and H. O. Elansary. 2022. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agron. 12 (982): 1-18.
Yari, L., A. Zareyan, S. Sheidaie, and F. Khazaei. 2012. Influence of high and low temperature treatments on seed germination and seedling vigor of rice (Oryza sativa L.). World. Appl. Sci. J. 16 (7): 1015-1018.
Zhang, M., Q. Qi, D. Zhang, S. Tong, X. Wang, Y. An, and X. Lu. 2021. Effect of priming on Carex Schmidtii seed germination and seedling growth: Implications for tussock wetland restoration. Ecol. Eng. 171 (106389): 1-7.