The use of silicon in controlling osmotic stress and its effect on seed germination characteristics and seedling growth of Camelina

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi Uneversity.

2 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi university, Kermanshah, Iran.

3 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University.

Abstract

Camelina oilseed has a lot of ability to be placed in the cultivation pattern of Iran's drylands. The seed germination and seedling establishment in dryland agriculture are usually exposed to drought stress. The aim of this study is to investigate the application effect of silicon concentrations in improving the seed germination characteristics and seedling growth of camelina under drought-stress conditions. The experiment was conducted as a factorial based on CRD with three replications at the seed laboratory of Razi University. The factors include camelina genotypes (Sohail and Line-84), drought stress (0, -3, -6, -9 bar using PEG-6000) and silicon (0, 2, 4, 6 and 8 mM using sodium silicate). According to the results, increasing the drought stress decreased the seed germination characteristics and the seedling growth. However, germination percentage, germination rate, seedling length, seedling dry weight, seedling vigor indices and allometric coefficient of plumule to radicle weight were increased by silicon. To increase the measured traits, silicon 6 and 8 mM were better than other concentrations. In general, silicon was effective in mitigating the effects of drought stress on the seedling growth of camelina by improving the seed germination characteristics and seedling growth. Therefore, it seems that the silicon is an effective factor in such studies and its usability in camelina seed technology and seed coating for dryland areas.

Keywords


Akhundi, M. 2010. Investigating the effect of PEG stress on alfalfa genotypes in water culture environment, 11th Congress of Agricultural Sciences and Plant Breeding of Iran. Shahid Beheshti University. (In Persian)
Alen, S.G., A.K. Dobrenz, M.H. Schonhorst, and J.E. stoner. 1985. Heritability of NaCl tolerance in germination of alfalfa seed. J. Agron. 77: 99-101. Doi: 10.2134/agronj1985.00021962007700010023x.
Arellano, A.D.V., G.M. Da Silva, E. Guatimosim, K.R. Dorneles, L.G. Moreira, and L.J. Dallagnol. 2021. Seeds Coated with Trichoderma Atroviride and Soil Amended with Silicon Improve the Resistance of Lolium Multiflorum Against Pyricularia Oryzae. Biol. Control. 154: 104499. Doi: 10.1016/j.biocontrol.2020.104499.
Association of Official Seed Analysts (AOSA). 1993. Seed Vigor Testing Journal of Science. 12(1): 1-19.
Atarodi, H., H. Irannejad, A. Shiranirad, R. Amiri, and G.H. Akbari. 2012. Effects of Drought Stress and Planting Dates on Seedling Emergence, Plant Growth and Seed Vigour of Produced Seeds in Canola (Brassica napus) Cultivars. Iranian Journal of Field Crop Science. 42 (1): 71-80. Dor: 20.1001.1.20084811.1390.42.1.8.4 (In Persian)
Azad, F., and A. Toubeh. 2000. The relationship between wheat germination efficiency and dry matter production and some other factors in laboratory culture and vegetation. Summary of 6th Iranian Conference on Plant Breeding (Babolsar). Mazandaran University. (In Persian)
Balakhnina, T., and A. Borkowska. 2013. Effects of silicon on plant resistance to environmental stresses: review. Int. Agrophys. 27(2): 225-232. Doi: 10.2478/v10247-012-0089-4.
Berti, M., R. Gesch, C. Eynck, J. Anderson, and S. Cermak. 2016. Camelina uses, genetics, genomics, production, and management. Ind. Crops. Prod. 94: 690-710. Doi: 10.1016/j.indcrop.2016.09.034.
Biju, S., S. Fuentes, and D. Gupta. 2017. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant. Physiol. Biochem (PPB). 119: 250-264. Doi: 10.1016/j.plaphy.2017.09.001.
Bradford, K.J. 1995. Water Relations in Seed Germination. Pp 351-396. In J. Kigel, and G. Galili (Eds.) Seed Development and Germination. Marcel Dekker, Inc, New York.
Chaudhry, S., and G. P. S. Sidhu. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant. Cell. Rep. 41(1): 1-31.  Doi: 10.1007/s00299-021-02759-5
De, R., and R. K. Kar. 1995. Seed germination and seedling growth of mung bean (Vigna radiata) under water stress included by PEG-6000. Seed Sci. Technol. 23: 301-304.
Edalatifard, L., S.A.M. Modares Sanavy, and H. Askari. 2014. The optimum condition under light and Media for Seed germination of Withania coagulans. Intl. J. Farm Allied Sci. 3(7): 722-728.
Ellis, R.H., and E.H. Roberts. 1981. The quantification of aging and survival in orthodox seeds. Seed Sci. Technol. 9: 377-409.
Fernandez, G.C.J. 1992. Effective selection criteria for assessing plant stress tolerance. Pp 257-270. In C. G. Kuo(Ed.). Proc. Int. Symp. Adaptation of Food Crops to Temperature and Water Stress, Taiwan. 13-16 Aug. 1992. Shanhua, Taiwan. Doi: 10.22001/wvc.72511.
Gardner, F.P., R.B. Pearce, and R.L. Mitchell. 1999. Physiology of crop plants. Translated by Koocheki, A. and G. Sarmadnia. Jahad Daneshgahi Press, Mashhad. (In Persian)
Gharib Eshghi, A., and M.H. Nemati. 2012. Technical publication of rapeseed planting, planting and planting. Ministry of Agricultural Jihad, Agricultural Research, Education and Extension Organization, Extension and Education Vice-Chancellor. Agricultural Jihad Organization of Zanjan province, management of agricultural coordination and promotion, Iran. (In Persian)
Ghidoli, M., E. Ponzoni, F. Araniti, D. Miglio, and R. Pilu. 2023. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. Plants. 12(3): 570. Doi: 10.3390/plants12030570.
Guo, Q., L. Meng, P. Mao, and X. Tian. 2013. Role of silicon in alleviating salt-induced toxicity in white clover. Bull. Environ. Contam. Toxicol. 91(2): 213-216. Doi: 10.1007/s00128-013-1034-3.
Gupta, A. K., J. Singh, N. Kaur, and R. Singh. 1993. Effect of polyethylenglycol-induced water stress on uptake interconversion and transport of sugars in chickpea seedlings. Plant. Physiol. Biochem (PPB). 31:743-747.
Hampton, J.G., and D.M. Tekrony. 1995. Handbook of vigor test methods (3rd. Ed.) ISTA, Zurich, Swirztland
Hosseini Sanehkoori, F., H. Pirdashti, and E. Bakhshandeh. 2021. Quantifying water stress and temperature effects on camelina (Camelina sativa L.) seed germination. Environmental and Experimental Botany. 186: 10445. Doi:10.1016/j.envexpbot.2021.104450
International Seed Testing Association (ISTA). 2003. Handbook for Seedling Evaluation (3rd. Ed.). International Seed Testing Association. Zurich, Switzerland.
International Seed Testing Association (ISTA). 2006. International Rules for Seed Testing. ISTA, Basserdorf, Switzerland.
Irannejad, K. and N. Shahbazian. 2004. Resistance of crops to environmental stresses, Karno Publications. (In Persian)
Kafi, M., A. Nizami, H. Hosseini, and A. Masoumi. 2005. Physiological effects of drought stress caused by polyethylene glycol on germination of lentil genotypes. Iranian Journal of Field Crop Science. 3(1):69-80. Doi: 10.22067/gsc.v3i1.1293. (In Persian)
Kameswara Rao, N., Dulloo, M. E., and J. M. Engels. 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64: 1061-1074. Doi:10.1007/s10722-016-0425-9.
Khaeim, H., Z. Kende, L. Balla, I.C. Gyuricza, A. Eser and Á. Tarnawa. 2022. The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). Sustainability. 14(7): 3887. Doi. 10.3390/su14073887.
Khoshsokhan, F., M. Babalar, H.R. Chaghazardi and M.R. Fatahi-Moghadam. 2012. Effect of salinity and drought stress on germination indices of two Thymus species. Agronomy Research Moldavia. 45(1):28-35. Doi:10.2478/v10298-012-0003-z.
Leport, N.C., J. Turner, M.D. French, R. Barr, S.L. Duda, D. Dauies, K.H. Tennant, and M. Siddique. 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. Eur. J. Agron. 11(3-4):279- 291. Doi:10.1016/S1161-0301(99)00039-8.
Maguire, J.D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Sci. 2(2): 176-177. Doi: 10.2135/cropsci1962.0011183X000200020033x.
Malhi, G. S., M. Kaur, and P. Kaushik. 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability. 13(3):1318. Doi: 10.3390/su13031318.
Malik C.P., K. Gupta and S. Sharma. 1986. Effect of water stress on germination and seedling metabolism of gram (Cicer arietinum L.). Acta Agronemica Hungarica. 35: 11-16.
Marchner, H. 1995. Mineral nutrition of higher plants. Ann Bot. 78(4): 527–528. Doi: 10.1006/anbo.1996.0155.
Michel, B.F., and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51(5): 914-916. Doi: 10.1104/pp.51.5.914.
Nikkhah, H.R., H. Tajali, S.A. Tabatabaei, and M. Taheri. 2022. Evaluation of Yield Stability and Drought Tolerance of Barley Genotypes in Temperate Regions of the Iran. Journal of Crop Breeding. 14(44): 1-17. Dor: 20.1001.1.22286128.1401.14.44.1.8. (In Persian)
Parande, S., G.R. Zamani, M.H.S. Zahan, and M. Ghader. 2013. Effects of silicon application on the yield and component of yield in the common bean (Phaseolus vulgaris) under salinity stress. International Journal of Agronomy and Plant Production. 4(7): 1574-1579. Doi:10.22067/gsc.v3i1.1293 (In Persian)
Poudineh, Z., B.A. Fakheri, A.R. Sirosmehr, and S. Shojaei. 2018. Effect of drought stress on the morphology and antioxidant enzymes activity of Foeniculum vulgare cultivars in Sistan.  Indian. J. Plant. Physiol. 23: 283-292. Doi:10.1007/s40502-018-0370-z.
Rahimi, A.A., A. Madhaj, and M.M. Majdam. 2018. The study of seed germination and seedling growth of alfalfa (Medicago sativa L.) genotypes under the effect of drought stress. Crop Physiol. J. 10(40): 129-144. Dor: 20.1001.1.2008403.1397.10.40.8.4. (In Persian)
Rahnama-Ghahfarokhi, A., and R. Tavakkol-Afshari. 2007. Methods for dormancy breaking and germination of galbanum seeds (Ferula gummosa). Asian J. Plant. Sci. 6(4): 611-616. Doi: 10.3923/ajps.2007.611.616
Rodrigues, L.A., I.C. De Oliveira, G.A. Nogueira, T.R.B. Da Silva, A.c. Da Silva Candido, and C.Z. Alves. 2019. Coating seeds with silicon enhances the corn yield of the second crop. Rev. Caatinga. 32 (4):897-903. Doi: 10.1590/1983-21252019v32n405rc.
Rostaei, M., D. Sadeghzadeh, E. Zadhassan, and Y. Arshad. 2003. Investigating the relationship between traits affecting wheat grain yield using factor analysis in dryland conditions. J. Agric. Knowledge. 13(1):1-10. (In Persian)
Sakihama, Y., M. F. Cohen, S. C. Grace, and H. Yamasaki. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 177: 67-76.
Seyed ahmadi, S.A. 2013. Evaluation of germination and vigor parameters of rapeseed parents seeds resulted from the heat and drought stress at the end of growth season. Crop Physiol. 5(17): 61-75. Dor: 20.1001.1.2008403.1392.5.17.5.0. (In Persian)
Sinaki, J.M., Majidi-Heravan, E., Shirani Rad, A.H., Noor-Mohammadi, G.H. and Zarei, G. 2007. The effects of water deficit during growth stages of canola (Brasica napus L.). Am.-Eurasian J. Agric. Environ. Sci. 2: 417-422.
Soltani, E., F. Akram-Ghaderi, and H. Maemar. 2009. The effect of priming on germination components and seedling growth of cotton seeds under drought. Journal of Agricultural Sciences and Natural Resources. 14(5): 9-16. (In Persian)
Srivastava, A. K., J. Suresh Kumar, and P. Suprasanna. 2021. Seed ‘primeomics’: plants memorize their germination under stress. Biol. Rev. 96(5): 1723-1743. Doi: 10.1111/brv.12722 .
Szira, F., A.F. Balint, A. Borner, and G. Galiba. 2008. Evaluation of drought-related traits and screening methods at different developmental stages in spring barley. J. Agron. Crop Sci. 194: 334-342. Doi: 10.1111/j.1439-037X.2008.00330.x.
Vieira, R. D., D. M. Tekrony, and D. B. Egli. 1992. Effect of drought and defoliation stress in the field of soybean seed germination and vigor. Crop Sci. 32:471-475. Doi: 10.2135/cropsci1992.0011183X003200020037x.
Wu, L.M., Y. Fang, H.N. Yang, and L.Y. Bai. 2019. Effects of drought-stress on seed germination and growth physiology of quinclorac resistant Echinochloa crusgalli. PLos One. 14(4): 1-11. Doi: 10.1371/journal.pone.0214480.
Yamamato, A., J. Turgeon, and J.M. Duich. 1997. Seedling emergence and growth of solid matrix primed Kentucky bluegrass seed. Crop Sci. 37: 225. Doi: 10.2135/cropsci1997.0011183X003700010039x.
Yang, H., L. Zhao, S. Zhao, J. Wang, and H. Shi. 2017. Biochemical and transcriptomic analyses of drought stress responses of LY1306 tobacco strain. Sci. Rep. 7: 1-10. Doi: 10.1038/s41598-017-17045-2.
Yu Shi, Y., Y. Zhang, H. Yao, J. Wu, H. Sun, and H. Gong. 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant. Physiol. Biochem. (PPB). 78: 27-36. Doi: 10.1016/j.plaphy.2014.02.009 .
Zarei, L., E. Farshadfar, R. Haghparast, R. Rajabi, and M. Mohammadi SarabBadieh. 2007. Evaluation of some indirect traits and indexes to identify drought tolerance in bread wheat (Triticum aestivum L.). Asian J. Plant. Sci. 6(8): 1204-1210. Doi: 10.3923/ajps.2007.1204.1210.
Zhang, W., Z. Xie, D. Lang, J. Cui, and X. Zhang. 2017. Beneficial Effects of Silicon on Abiotic Stress Tolerance in Legumes. J. Plant Nutr. 1-33. Doi: 10.1080/01904167.2017.1346127.