Document Type : Original Article

Author

Department of Horticulture Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Abstract

Henna (Lawsonia inermis L.) is an ornamental and medicinal plant containing Lawson’s active substance, which is cultivated in some regions of the south and southeast of Iran. Salinity is one of the major abiotic environmental stress that affects almost all stages of plant development. Polyamines such as putrescine can play important roles in plant growth and stress responses. In order to investigate the effect of putrescine and NaCl salinity stress on some germination indices, a factorial experiment was conducted with two levels of putrescine (0 and 0.75 mM) and four salinity levels (0, 50, 100 and 150 mM) based on completely randomized design with four replications in germinator for 11 days. The results showed that at control salinity level, there was no significant difference between putrescine treatments on Henna seed germination indices except the seed vigor index. The interaction between putrescine and salinity stress showed that pre-treatment with putrescine alleviated the negative effects of 50 and 100 mM salinity stress on the germination rate. However, it increased the negative effects of 150 mM salinity stress on germination percentage, radicle length, plumule length, seedling fresh weight, seed vigor index and α-amylase activity in comparison to control. The results showed that germination of Henna seeds is sensitive to salinity stress and they are only able to tolerate low levels of salinity (50 mM). According to a significant correlation between α-amylase activity with germination percentage (r= 0/98), it can be concluded that probably the change in α-amylase activity decreased the germination percentage.

Keywords

Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
Adda, A., Regagba, Z., Latigui, A., & Merah, O. (2014). Effect of salt stress on α-amylase activity, sugars mobilization & osmotic potential of Phaseolus vulgaris L. seeds var. 'Cocorose' and 'Djadida' during germination. Journal of Biological Sciences, 14(5), 370-375. https://doi.org/10.3923/jbs.2014.370.375
Alcázar, R., Bueno, M., & Tiburcio, A. F. (2020). Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells, 9(11), 2373. https://doi.org/10.3390/cells9112373
Ali, R. M. (2000). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science, 152(2), 173-179. https://doi.org/10.1016/S0168-9452(99)00227-7
Ali, R. M., Abbas, H. M., & Kamal, R. K. (2009). The effects of treatment with polyamines on dry matter and some metabolites in salinity–stressed chamomile and sweet majoram seedlings. Plant, Soil and Environment, 55(11), 477-483.
Ambika, S., Sujatha, K., & Balakrishnan, K. (2019). Seed priming treatments on seedling quality of henna (Lawsonia inermis L.) seeds. Acta Horticulture, 1241, 375-380. https://doi.org/10.17660/ActaHortic.2019.1241.54
Bahrasemani, S., Seyedi, A., Fathi, S., & Jowkar, M. (2023). The seed priming using putrescine improves germination indices and seedlings morphobiochemical responses of indigo (Indigofera tinctoria) under salinity stress. Journal of Medicinal Plants and By-Products, 13(1), 179-188. https://doi.org/10.22034/jmpb.2023.128870
Borromeo, I., Domenici, F., Del Gallo, M., & Forni, C. (2023). Role of polyamines in the response to salt stress of tomato. Plants, 12(9), 1855. https://doi.org/10.3390/plants12091855
Chaudhary, G., Goyal, S., & Poonia, P. (2010). Lawsonia inermis Linnaeus: A phytopharmacological review. Int J Pharm Sci Drug Res, 2(2), 91-98.
Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science, 9, 1945. https://doi.org/10.3389/fpls.2018.01945
Dalziell, E. L., Lewandrowski, W., & Merritt, D. J. (2020). Increased salinity reduces seed germination and impacts upon seedling development in Nymphaea L. (Nymphaeaceae) from northern Australia’s freshwater wetlands. Aquatic Botany, 165, 103235. https://doi.org/10.1016/j.aquabot.2020.103235
Enneb, H., & Mohammad Ayaz, A. (2016). Germination behaviour of Lawsonia inermis L. as influenced by polyethylene glycol (PEG). Dialogo, 3(1), 173-179.
Enneb, H., Belkadhi, A., & Ferchichi, A. (2016). Physiological adaptations of henna plant (Lawsonia inermis L.) to different irrigation conditions in Tunisian arid region. JAPS: Journal of Animal & Plant Sciences, 26(4), 1026-1033. URL: http://www.thejaps.org.pk/docs/v-26-04/18.pdf
Farahbakhsh, H., Pasandi Pour, A., & Reiahi, N. (2017). Physiological response of henna (Lawsonia inermis L.) to salicylic acid and salinity. Plant Production Science, 20(2), 237-247. https://doi.org/10.1080/1343943X.2017.1299581
Farsaraei, S., Mehdizadeh, L., & Moghaddam, M. (2021). Seed priming with putrescine alleviated salinity stress during germination and seedling growth of medicinal pumpkin. Journal of Soil Science and Plant Nutrition, 21(3), 1782-1792. https://doi.org/10.1007/s42729-021-00479-z
Fernández-García, N., Olmos, E., Bardisi, E., García-De la Garma, J., López-Berenguer, C., & Rubio-Asensio, J. S. (2014). Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology, 171(5), 64-75. https://doi.org/10.1016/j.jplph.2013.11.004
Hamidi Moghaddam, A. (2022). Effect of mechanical and chemical treatments on germination characteristic, total phenolic compound and enzyme activity of henna seeds (Lawsonia inermis L.). Iranian Journal of Seed Science and Research, 8(4), 396-410. https://doi.org/10.22124/jms.2021.5288
 
 
 
Hammami, H., Saadatian, B., & Hosseini, S. A. H. (2020). Geographical variation in seed germination and biochemical response of milk thistle (Silybum marianum) ecotypes exposed to osmotic and salinity stresses. Industrial Crops and Products, 152, 112507. https://doi.org/10.1016/j.indcrop.2020.112507
Hartman, H., D. Kester, & Davis, F. (1990). Plant propagation: Principles and practices. Prentice Hall International Editions.
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
ISTA. (1979). The germination test. International Seed Testing Association. Seed Science and Technology, 4, 23-28.
Khan, H. A., Ziaf, K., Amjad, M., & Iqbal, Q. (2012). Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean Journal of Agricultural Research, 72(3), 429-433.
Krishnamurthy, L., Ito, O., Johansen, C., & Saxena, N. P. (1998). Length to weight ratio of chickpea roots under progressively receding soil moisture conditions in a Vertisol. Field Crops Research, 58(3), 177-185. https://doi.org/10.1016/S0378-4290(98)00093-8
Lal, G., Roy, P. K., & Singh, Y. V. (2007). Effect of different treatments on germination behaviour of henna (Lawsonia inermis L.) seeds. SAARC Journal of Agriculture, 5(2), 67-74. http://www.saarcagri.net
Li, Z., Peng, Y., Zhang, X. Q., Ma, X., Huang, L. K., & Yan, Y. H. (2014). Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules, 19(11), 18003-18024. https://doi.org/10.3390/molecules191118003
Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S., & Yin, C. (2018). Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 9, 275. https://doi.org/10.3389/fpls.2018.00275
Marzougui, N., Sabbahi, S., Guasmi, F., Hammami, A., Haddad, M., & Rejeb, S. (2018). Effects of wastewater quality on Henna (Lawsonia inermis L.) germination and seedling growth: A case study, Tunisia. International Journal of Environment, Agriculture and Biotechnology, 3(1), 147-157. https://doi.org/10.22161/ijeab/3.1.19
Mohamadi, F., Bagheri, N., Kiani, G., & Babaeian Jelodar, N. (2018). Evaluation of reaction of some rice genotypes to salinity stress at germination stage. Journal of Crop Breeding, 10(27), 20-30.  https://doi.org/10.29252/jcb.10.27.20
Mustafavi, S. H., Naghdi Badi, H., Sękara, A., Mehrafarin, A., Janda, T., Ghorbanpour, M., & Rafiee, H. (2018). Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiologiae Plantarum, 40, 1-19. https://doi.org/10.1007/s11738-018-2671-2
Najar, B., Pistelli, L., Marchioni, I., Pistelli, L., Muscatello, B., De Leo, M., & Scartazza, A. (2020). Salinity-induced changes of photosynthetic performance, lawsone, VOCs, and antioxidant metabolism in Lawsonia inermis L. Plants, 9(12), 1797. https://doi.org/10.3390/plants9121797
Noroozisharaf, A., Kaviai, M., & Rasouli, M. (2021). Effect of brassinosteroid on morphological and physiological traits of garden thyme (Thymus vulgaris) in salinity stress. Iranian Journal of Seed Sciences and Research, 8(1), 63-76. https://doi.org/10.22124/jms.2021.5203
Orhan, E., Uzundumlu, F., Yiğider, E., & Aydin, M. (2020). The effect of putrescine on DNA methylation on cabbage plant under salt stress conditions. Turkish Journal of Agriculture and Forestry, 44(3), 301-311. https://doi.org/10.3906/tar-1911-38
Parida, A. K., Das, A. B., Mittra, B., & Mohanty, P. (2004). Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift für Naturforschung C, 59(5-6), 408-414. https://doi.org/10.1515/znc-2004-5-622
Parihar, S. S., Dadlani, M., Mukhopadhyay, D., & Lal, S. K. (2016). Seed dormancy, germination and seed storage in henna (Lawsonia inermis). The Indian Journal of Agricultural Sciences, 86(9), 1201-1207. https://doi.org/10.56093/ijas.v86i9.61520
Reis, R. S., de Moura Vale, E., Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2016). Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. Journal of Proteomics, 130, 170-179. https://doi.org/10.1016/j.jprot.2015.09.029
Sarhadi, H., Daneshian, J., Valadabadi, S. A., & Heidari Sharafabad, H. (2014). Study of irrigation deficit and N fertilizer effect on reproductive components of henna ecotypes in Jiroft, Iran. Biological Forum: An International Journal, 8(1), 80-87.
Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25(2), 333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
Shuba, A. C., Channnakeshava, B. C., Bhanuprakash, K., & Kumar, A. (2018). Study on seed quality performance and enzymatic activity after dormancy breaking in henna. Journal of Pharmacognosy and Phytochemistry, 7(1), 105-108.
Singh, D. K., Luqman, S., & Mathur, A. K. (2015). Lawsonia inermis L.–A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Industrial Crops and Products, 65, 269-286. https://doi.org/10.1016/j.indcrop.2014.11.025
Srivastava, A. K., Lokhande, V. H., Patade, V. Y., Suprasanna, P., Sjahril, R., & D’Souza, S. F. (2010). Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiologiae Plantarum, 32, 1135-1144. https://doi.org/10.1007/s11738-010-0505-y
Suchak, H., & Pandya, R. V. (2020). Effect of spermine and putrescine on germination and growth of Vigna radiata (L.) R. Wilczek seeds. In Proceedings of the National Conference on Innovations in Biological Sciences (NCIBS). http://dx.doi.org/10.2139/ssrn.3585124
Varghese, K. J., Silvipriya, K. S., Resmi, S., & Jolly, C. I. (2010). Lawsonia inermis (henna): A natural dye of various therapeutic uses—a review. Inventi Impact: Cosmeceuticals.
Varner, J. E. (1964). Gibberellic acid controlled synthesis of α-amylase in barley endosperm. Plant Physiology, 39(3), 413–415. https://doi.org/10.1104/pp.39.3.413
Yang, L. I. U., Hong, X. U., WEN, X. X., & LIAO, Y. C. (2016). Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. Journal of Integrative Agriculture, 15(12), 2759-2774. https://doi.org/10.1016/S2095-3119(16)61366-7