Document Type : Original Article

Authors

1 Researcher, Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

2 Assistant Professor, Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Abstract

Tomato (Solanum lycopersicum L.) is one of the most important and popular fruit vegetables, to enter a new variety of tomato in the national list of plant varieties of Iran or to obtain the right of a breeder, it is a legal requirement to perform a Distinctness, Uniformity and Stability examination. In order to provide morphological description­ and evaluation of Distinctness and Uniformity19 tomato varieties (15newvarieties and 4check varieties) were examined under greenhouse conditions in 2021and 2022.The­ experiment was carried out using a completely randomized design with two replications. Varieties were distinguished based on qualitative, pseudo qualitative and quantitative traits such as green shoulder in fruit, fruit shape in longitudinal section, fruit firmness ,Inflorescence type, ribbing at peduncle end in fruit, blistering of leaf, size of blossom scar, size of peduncle scar, depression at peduncle end in fruit, anthocyanin coloration in the upper part of the stem, leaf attitude, intensity of green color in leaf, intensity of green color excluding shoulder (before maturity)in fruit and number of locules in fruit, But Sumurai variety was not distinguished based on qualitative, pseudo qualitative and quantitative traits with compared of Lisa (check) variety. Analysis of variance quantitative traits indicated that evaluated traits such as fruit length and diameter, length to diameter of fruit, pericarp thickness, total diameter of fruit, diameter of core and fruit weight were significantly different at the α=1 % probability level. Also length of leaflets, width of leaflets, width of leaf, diameter of core in cross section in relation to total diameter and peduncle length were significantly different at the α=5 % probability level. These results showed that new varieties had essential uniformity according to standard  of International Union for the Protection Of new Varieties of plants.

Keywords

Anonymus, 2023. Seed and Plant Certification and Registration Institute. [Online] Available at https://spcri.ir/page-Main/fa/0/form/pId388. [In Persian]
Anonymus, 2022. Iran's rank in the production of 20 agricultural products. Donya-e-eqtesad. Newspaper number: 5459. 25 May 2022. News no. 3868295. Tehran, Iran. [In Persian]
Anonymus. (2009). National protocol of distinctness, uniformity and stability (DUS) in tomato. Seed and Plant Certification and Registration Research Institute. Agricultural Research and Education Organization, Seed and Plant Certification and Registration Institute, Karaj, Iran. [In Persian]
Bahrami, H. (2003). Evaluation of quantitative and qualitative traits of new tomato cultivars. Project of Ministry of Jihad-e-Agriculture. Agricultural Research Education and Extension Organization, Iran. [In Persian]
Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future. Annals of Botany, 100, 1085–1094. https://doi.org/10.1093/aob/mcm150
Bhattarai, K., Sharma, S., & Panthee, D. R. (2018). Diversity among modern tomato genotypes at different levels in fresh-market breeding. International Journal of Agronomy, 1–15. https://doi.org/10.1155/2018/4170432
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE, 7, e48198. https://doi.org/10.1371/journal.pone.0048198
Borys, J., Kowalczyk, B., & Waszak, J. (2000). Distinctness, uniformity and stability testing of tomato varieties in Poland. Acta Physiologiae Plantarum, 22, 225-229. https://doi.org/10.1007/s11738-000-0016-3
Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., Rosa, E., Soler, E., Plazas, M., & Soler, S. (2018). Insights into the adaptation to greenhouse cultivation of the traditional Mediterranean long shelf-life tomato carrying the alc mutation: A multi-trait comparison of landraces, selections, and hybrids in open field and greenhouse. Frontiers in Plant Science, 9, 1-16. https://doi.org/10.3389/fpls.2018.01774
García-Gusano, M., García-Martínez, S., & Ruiz, J. J. (2004). Use of SNP markers to genotype commercial hybrids and Spanish local cultivars of tomato. TGC Report, 54. Univ. Florida, Gulf Coast Research and Education Center.
Giovannucci, E. A., Ascherio, A. B., Rimm, M. J., Stampfer, G. A., Golditz, G. A., & Willett, W. C. (1995). Intake of carotenoids and retinol in relation to risk of prostate cancer. Journal of the National Cancer Institute, 87, 1767–1776. https://doi.org/10.1093/jnci/87.23.1767
Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2, 379–392.
Kouam, E. B., Dongmo, J. R., & Djeugap, J. F. (2018). Exploring morphological variation in tomato (Solanum lycopersicum): A combined study of disease resistance, genetic divergence and association of characters. Agricultura Tropica et Subtropica, 51, 71–82. https://doi.org/10.2478/ats-2018-0008
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A., Zhang, Y., Lin, K., Li, C., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46, 1220–1226. https://doi.org/10.1038/ng.3117
Lopez, M.R., Santiaguillo, J. F. H., Lomeli Pena, A., Guevas, J. A. S., & Sahagun-Castollanos, J. (1994). Evaluations of 60 accessions of husk tomato in Chapingo, Mexico. Revista Chapingo: Serie Horticultura, 1, 131–134.
Maria, L. L. G., Óscar, J. G., Juan, J. L. G., Paola, H. C., & Carlos, E. O. V. (2014). Quality parameters and bioactive compounds of red tomatoes (Solanum lycopersicum L.) cv Roma VF at different postharvest conditions. Journal of Food Research, 3, 8–18. https://doi.org/10.5539/jfr.v3n5p8
Nowicki, M., Kozik, E. U., & Foolad, M. R. (2013). Late blight of tomato. In R. Varshney & R. Tuberosa (Eds.), Translational Genomics for Crop Breeding (pp. 241–265). John Wiley & Sons.
Parthasarathy, V. A., & Aswath, C. (2002). Genetic diversity among tomato genotypes. Indian Journal of Horticulture, 59, 162–166.
Patwary, M. M. A., Rahman, M. M., Ahmad, S., Miah, M. A. K., & Barua, H. (2013). Study of heterosis in heat tolerant tomato (Solanum lycopersicum L.) during summer. Bangladesh Journal of Agricultural Research, 38, 531–544. https://doi.org/10.3329/BJAR.V38I3.16980
Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84, 1-186. https://doi.org/10.2307/25027972
Rahman, M. A., Ahmad, M. S., Khan, Q. N., & Abdullah-Al-Mahbub, M. A. I. (2003). Genetic analysis on yield and its component traits of tomato (Lycopersicon esculentum Mill.). The Agriculturists, 1, 21–26.
Razavi, V., Khandan, A., & Sadegi, L. (2016). Evaluation of morphological traits for distinctness, uniformity, and stability (DUS) of 26 tomato cultivarsResearch Project, Seed and Plant Certification and Registration Research Institute, Karaj, Iran. Project no. 4-08-08-92126. [In Persian]
Rick, C. M., Zobel, R. W., & Fobes, J. F. (1974). Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proceedings of the National Academy of Sciences of the United States of America, 71, 835–839. https://doi.org/10.1073/pnas.71.3.835
Sacco, A., et al. (2015). Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE, 10, e0137139. https://doi.org/10.1371/journal.pone.0137139
Salim, M. M. R., Rashid, M. H., Hossain, M. M., & Zakaria, M. (2020). Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of Saudi Society of Agricultural Sciences, 19, 233–240. https://doi.org/10.1016/j.jssas.2018.11.001
Shafiei Ajpesha, R. (2000). Evaluation of quantitative and qualitative traits of new tomato cultivars. Project of Ministry of Jihad-e-Agriculture, Seed and Plant Improvement Institute, Karaj, Iran. [In Persian]
Terzopoulos, P., & Bebeli, P. (2010). Phenotypic diversity in Greek tomato (Solanum Lycopersicum L.) landraces. Scientia Horticulturae, 126, 138–144. https://doi.org/10.1016/j.scienta.2010.06.022
UPOV. (2019). Test guidelines. [Online] Available at http://www.upov.int/en/publications/tg-rom/tg_index.htm
Vishwanath, K., Rajendra, P. S., Pallavi, H. M., & Prasanna, K. P. R. (2014). Characterization of tomato cultivars based on morphological traits. Annals of Plant Sciences, 3, 854–862.
Yesmin, L., Islam, M. S., Rahman, M. M., Uddin, M. N., & Ahmad, S. (2014). Inbred and hybrid seed production potentiality of tomato (Lycopersicon esculentum) genotypes and their yield performance during summer. Bangladesh Journal of Agricultural Research, 39, 13–21. https://doi.org/10.3329/bjar.v39i1.20057
Yazdi Samadi, B., Rezaei, A., & Valei Zada, M. (2006). Statistical designs in agricultural researchTehran University Press, Tehran, Iran. [In Persian]