The effect of salt-tolerant Pseudomonas fluorescens bacteria on the characteristics of germination and seedling growth indices of two sesame cultivars under salt stress

Document Type : Original Article

Authors

1 Agricultural Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran.

2 Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran

Abstract

In this research, morphological and biochemical traits of 10 isolates of Pseudomonas fluorescens bacteria, salt tolerance and the effect of bacteria on germination and seedling growth indicators of sesame cultivars under salt stress were conducted. All isolates were Gram-negative and had positive motility and fluorescent properties. Among the bacteria, P2, P3 and P9 isolates were more capable of solubilizing inorganic phosphorus. The ability to produce siderophore was higher in some isolates and the isolates P1, P2, P3, P8, and P10 showed the highest in vitro salt-tolerance. A factorial experiment including two sesame cultivars, 4 salinity levels and inoculation with 3 isolates was done in the form of a completely randomized design in three replications. Based on the results, the effect of bacteria, salinity, variety and their interaction on the percentage and rate of germination, germination indices, allometric coefficient and seedling length and weight index were significant. Under salt stress, the germination and growth of seedlings significantly decreased but, the pretreatment of sesame seeds with salt-tolerant isolates increased the characteristics related to germination and growth indices of sesame cultivars. The highest effect on all parameters including germination rate belonged to P9. Therefore, P9 isolate can be used to increase the tolerance of sesame to salinity stress.

Keywords


Abbas, Z. R., A. M. M. Al-Ezee, and S. H. Authman. 2019. Sidrophore Production and Phosphate Solubilization by Bacillus cereus and Pseudomonas fluorescens Isolated from Iraqi Soils and Soil Characterization. Int. J. Pharm. Clin. Res. 10(01): 74-79. DOI: 10.25258/ijpqa.10.1.12.
Ahmad, F., I. Ahmad, and M. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163(2): 173-181. DOI: 10.1016/j.micres.2006.04.001.
Al-Barakah, F. N, and M. Sohaib. 2019. Evaluating the germination response of Chenopodium quinoa seeds to bacterial inoculation under different germination media and salinity conditions. Seed Sci. Technol. 47(2): 161-169.DOI: h10.15258/sst.2019.47.2.05.
A Tri Wahyudi, R Puji Astuti, A Widyawati, and A Meryandini 2011. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J. Microbiol. Antimicrob. 3(2): 34-40.
Ashraf, M., S. M. Shahzad, M. Imtiaz, and M. S. Rizwan. 2018. Salinity effects on nitrogen metabolism in plants–focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 41(8): 1065-1081. DOI: 10.1080/01904167.2018.1431670.
Azhar, M., V. Uniyal, N. Chauhan, and D. S. Rawat. 2014. Isolation and biochemical characterization of Halophiles from Sahastradhara region, Dehradun, India. Int. J. Curr. Microb. Appl. Sci. 3: 753-760.
Bandehagh, A., M. Toorchi, D. Farajzadeh, Z. Dehganian, and S. Pirzad. 2018. Effect of Pseudomonas flourescens FY32 bacteria on leaf proteome pattern of rapeseed under salinity stress. J Genet. Eng. Biosafety. 20-216-3. DOR: 20.1001.1.25885073.1397.7.2.8.9. (In Persian)
Bayari, A., S. Nezarat, and A. Gholami. 2009. Relationship between germination index of seed corn with inoculation of PGPR (Pseudomonas, Azospirillium and Azotobacter). 11th Soil Science Congr. Iran,  Gorgan. 12 Jul. 2009. (In Persian)
Beheshti, A., H. Tavakoli, and A. Koocheki. 2000. The effect of salt stress and temperature on germination of different alfalfa cultivars. Agric. Sci. Technol. DOI: 10.5555/20000712406. (In Persian)
Bergey, D. H. (1994). Bergey's manual of determinative bacteriology, Lippincott Williams & Wilkins.
Bharti, N., D. Barnawal, D. Maji, and A. Kalra. 2015. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microb. Ecol. 70(1): 196-208. DOI: 10.1007/s00248-014-0557-4.
Biswas, J. K., A. Banerjee, M. Rai, R. Naidu, B. Biswas, M. Vithanage, M. C. Dash, S. K. Sarkar, and E. Meers. 2018. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma. 330: 117-124. DOI: 10.1016/j.geoderma.2018.05.034.
Calvo, P., L. Nelson, and J. W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant and soil. 383: 3-41. DOI: 10.1007/s11104-014-2131-8.
Daneshvar, M., M. Maleki, S. Shakeri, and A. Baghizadeh. 2020. Screening and identification of Iranian native phosphate solubilizing bacteria and investigation of their genetic diversity using RAPD markers. Nova Biologica Reperta. 6(4): 402-414. DOI: 10.29252/nbr.6.4.402. (In Persian)
Das, S., T. R. Nurunnabi, R. Parveen, A. N. Mou, M. E. Islam, K. M. D. Islam, and S. Rahman. 2019. Isolation and characterization of indole acetic acid producing bacteria from rhizosphere soil and their effect on seed germination. Int. J. Curr. Microbiol. Appl. Sci. 8(3): 1237-1245. DOI: 10.20546/ijcmas.2019.803.146.
Egamberdieva, D., K. Davranov, S. Wirth, A. Hashem, and E. F. Abd_Allah. 2017. Impact of soil salinity on the plant-growth–promoting and biological control abilities of root associated bacteria. Saudi J. Biol. Sci. 24(7): 1601-1608. DOI: 10.1016/j.sjbs.2017.07.004.
Fathollahy. S, and A. Mozaffari. 2020. Investigation the Effect of Seed Biopriming with Plant Growth Promoting Rhizobacteria (PGPR) on Antioxidant Enzymes Activity of Seedling and Germination Indices of Two Wheat Cultivar under Salt Stress Conditions. Seed Sci. Technol. 9(1): 27-44. DOI: 10.22034/ijsst.2018.122519.1215. (In Persian)
Gholami, A., S. Shahsavani, and S. Nezarat. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Agric. Bios. Eng. 3(1): 9-14. (In Persian)
Gregersen, T. 1978. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbiol. 5(2): 123-127. DOI: 10.1007/BF00498806.
Guerrieri, M. C., E. Fanfoni, A. Fiorini, M. Trevisan, and E. Puglisi. 2020. Isolation and screening of extracellular PGPR from the rhizosphere of tomato plants after long-term reduced tillage and cover crops. Plants. 9(5): 668. DOI: 10.3390/plants9050668.
Habib, S. H., H. Kausar, and H. M. Saud. 2016. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res. DOI: 10.1155/2016/6284547.
Hamidi, A., A. Asgharzadeh, A. Ahmadi, S. Akbari Vala, and R. Choukan. 2021. Effect of Plant Growth Promoting Bacteria (PGPB) and Mycorrhizae Fungi on three Maize (Zea mays L.) hybrids some seed germination and seedling vigour trait. J. Sustain. Agric. Sci. 31(3): 149-167. (In Persian)
Jiang, H., T. Wang, X. Chi, M. Wang, N. Chen, M. Chen, L. Pan, and P. Qi. 2020. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiol. J. 37(2): 110-118. DOI: 10.1080/01490451.2019.1666195.
Kafi, F. M., A. Nezami, H. Hosseini, and A. Masoumi. 2005. Physiological effects of drought stress by polyethylene glycol on germination of lentil (Lens culinaris Medik.) genotypes. Iranian J. Field Crops Res. 3(1): 69-80. DOI: 10.22067/GSC.V3I1.1293. (In Persian)
Khalifa, A., A. Metwally, R. B. Ammar, and F. A. Farghaly. 2020. ACC Deaminase-containing rhizobacteria from rhizosphere of Zygophyllum coccineum alleviate salt stress impact on wheat (Triticum aestivum L.). Sci. J. King Faisal Univ. Basic Appl. Sci. 21: 89-102. DOI: 10.37575/b/agr/1988.
Khanna, K., V. L. Jamwal, A. Sharma, S. G. Gandhi, P. Ohri, R. Bhardwaj, A. A. Al-Huqail, M. H. Siddiqui, H. M. Ali, and P. Ahmad. 2019. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere. 230: 628-639. DOI: 10.1016/j.chemosphere.2019.05.072.
Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry, and G. M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell. 3(11): 1187-1193. DOI: 10.1105/tpc.3.11.1187.
Li, H., Y. Qiu, T. Yao, Y. Ma, H. Zhang, and X. Yang. 2020. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 199: 104577. DOI: 10.1016/j.still.2020.104577.
Mahlooji, M. 2021. Effect of saline water irrigation and foliar application of maternal plant on germination characteristics of three barley cultivars. Crop Sci. Res. Arid Reg. 2-188-179. DOI: 10.22034/CSRAR.2021.262104.1072. (In Persian)
Manasa, K., S. Reddy, and S. Triveni. 2017. Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. J. Pharmacogn Phytochem. 6(3): 51-54.
Marakana, T., M. Sharma, and K. Sangani. 2018. Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. The Pharma Innov. J. 7: 102-110.
Miransari, M., A. Abrishamchi, K. Khoshbakht, and V. Niknam. 2014. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. . 34(2): 123-133. DOI: 10.3109/07388551.2012.731684. (In Persian)
Moravej, R., S. M. Alavi, M. Azin, and A. H. Salmanian. 2019. Production of xanthan gum by the native strain of Xanthmonas citri in whey medium and evaluation of its physicochemical properties. Biol. J. Microorganism. 8(30): 69-79. DOI: 10.22108/BJM.2019.115766.1185. (In Persian)
Mostafavi, K, and A. Heidarian. 2021. Effects of different salinity levels on germination indices in four sunflower varieties. Environ Stress Crop Sci. 14(3): 1-15. (In Persian)
Mousa, W. K., C. R. Shearer, V. Limay-Rios, T. Zhou, and M. N. Raizada. 2015. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front. Plant Sci. 6: 805. DOI: 10.3389/fpls.2015.00805.
Padikasan, I. A., K. Chinnannan, S. Kumar, and G. Subramaniyan (2018). Agricultural biotechnology: engineering plants for improved productivity and quality. Pp 87-104. In D. Barh and V. Azevedo(eds.). Omics Technologies and Bio-Engineering: Towards Improving Quality of Life. Elsevier, London. DOI: 10.1016/B978-0-12-815870-8.00006-1.
PerselloCartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell  Environ. 26(2): 189-199. DOI: 10.1046/j.1365-3040.2003.00956.x.
Piri, R. 2018. Effect of seed inoculation with plant growth promoting rhizobactria (PGPR) on some germination, biochemical indices and element contents of fennel (Foeniculum vulgare L.) under salinity stress. Iran. J. Field Crops Res. 49(3): 159-161. (In Persian)
Purru, S., S. Sahu, S. Rai, A. Rao, and K. Bhat. 2018. GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiol Mol Biol Plants. 24(5): 929-937. DOI: 10.1007/s12298-018-0558-8.
Rijavec, T, and A. Lapanje. 2016. Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front. Microbiol. . 7: 1785. DOI: 10.3389/fmicb.2016.01785.
Safdarian, M., H. Askari, M. Soltani, and G. Nematzadeh. 2017. Identification of halophile bacteria from salt deserts of Iran and study some of their physiological traits. Biol J Microorganism. 6(22): 45-57 (In Persian)
Saleem, M., M. Arshad, S. Hussain, and A. S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34(10): 635-648. DOI: 10.1007/s10295-007-0240-6.
Schaad, N. W., J. B. Jones, and W. Chun (2001). Laboratory guide for the identification of plant pathogenic bacteria, American Phytopathological Society (APS Press). U.S. DOI: 10.5555/20013064240.
Schwyn, B., and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1): 47-56. DOI: 10.1016/0003-2697(87)90612-9.
Shahverdi, M., H. Somagh, B. Mamivand, S. Habibipour, and M. Hemati. 2017. Effect of seed priming with plant growth promoting rhizobacteria (PGPR) on germination components of flaxseed (Linum usitatisimum L.) under salinity stress. Iranian J. Seed Res. DOI: 10.5555/20219901248. (In Persian)
Sharma, A., D. Shankhdhar, and S. Shankhdhar. 2013. Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ. 59(2): 89-94. DOI: 10.5555/20133097938.
Soltani Alikooyi, M., A. Abbasi Surki, M. Mobini Dehkordi, and S. Kiyani. 2020. Effects of Plant Growth-Promoting Rhizobacteria on Germination and Early Growth of Alfalfa (Medicago sativa) under Salt Stress Conditions. Iranian J. Seed Res. 6(2): 1-14. DOI: 10.29252/yujs.6.2.1. (In Persian)
Stassinos, P. M., M. Rossi, I. Borromeo, C. Capo, S. Beninati, and C. Forni. 2022. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosyst. 156(2): 370-383. DOI: 10.1080/11263504.2020.1857872.
Sudewi, S., A. Ala, B. Patandjengi, M. BDR, and A. Rahim. 2020. Scereening of Plant Growth Promotion Rhizobacteria (PGPR) to increase local aromatic rice plant growth. Int. J. Pharm. Res. DOI: 10.31838/ijpr/2021.13.01.151.
Tahmasbi, F., A. Lakzian, K. Khavazi, and A. Pakdin Parizi. 2014. Isolation, identification and evaluation of sidrophore production in Pseudomonas bacteria and its effect on hydroponically grown corn. Cell Mol. Res. 27(1): 75-86. DOR: 20.1001.1.23832738.1393.27.1.8.6. (In Persian)
Wahid, A., M. Farooq, S. M. Basra, E. Rasul, and K. H. Siddique. 2010. Germination of seeds and propagules under salt stress. Pp 321-337. In M. Pessarakli(ed.). Handbook of Plant and Crop Stress, Third Ed. Taylor and Francis, Boca Raton, U.S.
Wang, W., Z. Wu, Y. He, Y. Huang, X. Li, and B.-C. Ye. 2018. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol. Environ. Saf. 164: 520-529. DOI: 10.1016/j.ecoenv.2018.08.070.
Yaish, M. W., I. Antony, and B. R. Glick. 2015. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. 107(6): 1519-1532. DOI: 10.1007/s10482-015-0445-z.
Younesi, O., K. Poustini, M. R. Chaichi, and A. A. Pourbabaie. 2013. Effect of growth promoting rhizobacteria on germination and early growth of two alfalfa cultivars under salinity stress condition. J. Crop Improv. 14(2): 83-97. DOI: 10.22059/jci.2013.29503. (In Persian)
Zhao, Y. 2010. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61: 49-64. DOI: 10.1146/annurev-arplant-042809-112308.