Document Type : Original Article

Authors

1 PhD. Graduate in Agrotechnology, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

3 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

4 Professor, Department of Agrotechnlogy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

5 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

Abstract

The aim of this study was to investigate the relationship between the morphometric characteristics of the seeds of different buckwheat (Fagopyrum esculentum Möench) lots obtained from different planting dates (29th Aug: 1, 13th Sep: 2, 28th Sep: 3 and 12th Oc: 4) with its seed germination quality under different temperature treatments. For each of seed lot, four separate experiments with 11 temperature levels including 4, 7, 10, 15, 20, 25, 30, 35, 37, 40 and 45 °C were carried out in a completely randomized design with 3 replications in seed science and technology laboratory of Agricultural Sciences and Natural Resources of Khuzestan University in 2022. The results of analysis of variance demonstrated that temperature has a significant effect at the level of 1% on germination rate index. According to the model parameters and of course the standard error, the segmented model was chosen as the best model. Based on this, according to the superior (segmented) model, the base, optimal and ceiling temperatures for lot 1 are 4.82, 34.24 and 44.82 degrees Celsius respectively, in lot 2 they are 4.18, 33.82 and 46 respectively. 44.0 degrees Celsius, in lot 3 it was estimated 5, 34.64 and 43.87 degrees Celsius respectively and in lot 4 it was estimated 5, 31.69 and 44.27 degrees Celsius respectively. Identify the cardinal temperatures can be of great help in managing the optimal sowing date of crops.

Keywords

Adam, N. R., Dierig, D. A., Coffelt, T. A., Wintermeyer, M. J., Mackey, B. E., & Wall, G. W. (2007). Cardinal temperatures for germination and early growth of two Lesquerella species. Industrial Crops and Products, 25(1), 24-33. https://doi.org/10.1016/j.indcrop.2006.06.001
Ahmadvand, B., & Moosavi, S. A. (2022). Quantification of temperature effect on seed germination of buckwheat (Fagopyrum esculentum Möench). In Proceedings of the 3rd International and 17th National Iranian Crop Science Congress (n.p.). Shahid-Bahonar University of Kerman, Iran. [In Persian]
Ambika, S., Manonmani, V., & Somasundaram, G. (2014). Review on effect of seed size on seedling vigor and seed yield. Research Journal of Seed Science, 7(2), 31-38. https://doi.org/10.3923/rjss.2014.31.38
Babu, S., Yadav, G. S., Singh, R., Avasthe, R. K., Das, A., Mohapatra, K. P., & Prakash, N. (2018). Production technology and multifarious uses of buckwheat (Fagopyrum spp.): A review. Indian Journal of Agronomy, 63(4), 415-427.
Chacón, P. A. U. L. I. N. A., Bustamante, R. A. M. I. R. O., & Henríquez, C. A. R. O. L. I. N. A. (1998). The effect of seed size on germination and seedling growth of Cryptocarya alba (Lauraceae) in Chile. Revista Chilena de Historia Natural, 71(2), 189-197.
Childiyal, S. K., Sharma, C. M., & Gairola, S. (2009). Environmental variation in seed and seedling characteristics of Pinus roxburghii Sarg. from Uttaranchal, India. Applied Ecology and Environmental Research, 7(2), 121-129. https://doi.org/10.15666/aeer/0702_121129
FAOSTAT. (2016). Crop production statistics. http://faostat.fao.org/site/567/DesktopDefault.aspx (accessed September 1, 2016).
Habibzadeh Zarandi, M., Allahdadi, I., Khalaj, H., & Labbafi, M. (2017). Application of nonlinear regression models for prediction of cardinal temperatures in seed germination of various cumin (Cuminum cyminum) ecotypes. Iranian Journal of Seed Science and Technology, 6(1), 79-88.  https://doi.org/10.22034/ijsst.2017.113217 [In Persian]
Hashemi, A., Sharifzadeh, F., Maali Amiri, R., & Tavakkol Afshari, R. (2020). Evaluation of germination of safflower seed (Carthamus tinctorius L.) Faraman cultivar under water deficit stress and determination of cardinal germination temperatures. Iranian Journal of Seed Science and Technology, 9(3), 73-83. https://doi.org/10.22034/ijsst.2020.128718.1315 [In Persian]
Hashemi, A., Tavakkol Afshari, R., Tabrizi, L., & Barooti, S. (2022). Quantifying seed germination response of Plantago ovata under temperature and drought stress regimes. Iranian Journal of Seed Science and Technology, 11(2), 33-42. https://doi.org/10.22092/ijsst.2020.107995.1006. [In Persian]
Jameson, P. E., & Song, J. (2016). Cytokinin: A key driver of seed yield. Journal of Experimental Botany, 67(3), 593-606. https://doi.org/10.1093/jxb/erv461
Li, R., Chen, L., Wu, Y., Zhang, R., Baskin, C. C., Baskin, J. M., & Hu, X. (2017). Effects of cultivar and maternal environment on seed quality in Vicia sativaFrontiers in Plant Science, 8, Article 1411. https://doi.org/10.3389/fpls.2017.01411
Mamedi, A., Sharifzadeh, F., & Maali Amiri, R. (2021). Evaluation of quinoa seed germination variability in response to temperature, drought, and salinity stresses. Iranian Journal of Seed Science and Technology, 10(4), 57–67. https://doi.org/10.22092/ijsst.2021.353918.1388 [In Persian]
Mavi, K. (2010). The relationship between seed coat color and seed quality in watermelon Crimson SweetHorticultural Science, 37, 62–69. https://doi.org/10.17221/53/2009-HORTSCI
Moosavi, S. A., Siadat, S. A., Koochekzadeh, A., Parmoon, G., & Kiani, S. (2022). Effect of seed color and size on cardinal temperatures of castor bean (Ricinus communis L.) seed germination. Agrotechnique in Industrial Crops, 2(1), 1–10. https://doi.org/10.22126/atic.2022.7417.1041
Mwale, S. S., Azam-Ali, S. N., Clark, J. A., Bradley, R. G., & Chatha, M. R. (1994). Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Science and Technology, 22, 565–571.
Ordoñez-Salanueva, C. A., Seal, C. E., Pritchard, H. W., Orozco-Segovia, A., Canales-Martínez, M., & Flores-Ortiz, C. M. (2015). Cardinal temperatures and thermal time in Polaskia (Cactaceae) species: Effect of projected soil temperature increase and nurse interaction on germination timing. Journal of Arid Environments, 115, 73–80. https://doi.org/10.1016/j.jaridenv.2015.01.006
Piper, E. L., Boote, K. J., Jones, J. W., & Grimm, S. S. (1996). Comparison of two phenology models for predicting flowering and maturity dates of soybean. Crop Science, 36, 1606–1614. https://doi.org/10.2135/cropsci1996.0011183X003600060033x
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Ulian, T., Way, M., Castillo-Lorenzo, E., & Flores-Ortíz, C. M. (2019). Thermal time and cardinal temperatures for germination of Cedrela odorata L. Forests, 10(10), 841. https://doi.org/10.3390/f10100841
Shahi, C., Vibhuti, K. B., & Bargali, S. S. (2015). How seed size and water stress affect seed germination and seedling growth in wheat varieties. Current Agriculture Research Journal, 3(1), 60–68. https://doi.org/10.12944/CARJ.3.1.08
Siadat, S. A., Moosavi, S. A., Parmoon, G., & Kiani, S. (2021). Study on the relationship between seed size and aging on cardinal temperatures of canola. Iranian Journal of Seed Science and Technology, 10(4), 119–135. https://doi.org/10.22092/ijsst.2020.351193.1352 [In Persian]
Small, E. (2017). Buckwheat—the world’s most biodiversity-friendly crop? Biodiversity, 18(2-3), 108–123. https://doi.org/10.1080/14888386.2017.1332529
Steiner, F., Zuffo, A. M., Busch, A., de Oliveira Sousa, T., & Zoz, T. (2019). Does seed size affect the germination rate and seedling growth of peanuts under salinity and water stress? Pesquisa Agropecuária Tropical, 49, 1–9. https://doi.org/10.1590/1983-40632019v4954353
Tang, Y., Ding, M. Q., Tang, Y. X., Wu, Y. M., Shao, J. R., & Zhou, M. L. (2016). Germplasm resources of buckwheat in China. In M. Zhou, S.-H. Woo, & G. Wieslander (Eds.), Molecular breeding and nutritional aspects of buckwheat (pp. 13–20). Academic Press. https://doi.org/10.1016/B978-0-12-803692-1.00002-X
Yan, W., & Hunt, L. A. (1999). An equation for modeling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5), 607–614. https://doi.org/10.1006/anbo.1999.0955
Yin, X., Kropff, M. J., McLaren, G., & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1-2), 1–16. https://doi.org/10.1016/0168-1923(95)02236-Q
Zare, A., Malekpoor, M., & Arabizadeh, M. (2021). Determining cardinal temperature for seed germination of four weeds in the Brassicaceae family. Journal of Crop Improvement, 23(2), 417–428. https://doi.org/10.22059/jci.2021.301607.2387 [In Persian]
Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food Chemistry, 203, 231–245. https://doi.org/10.1016/j.foodchem.2016.02.050