Studying the effect of morphometric characteristics of buckwheat (Fagopyrum esculentum Möench) seeds in response to germination temperatures

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources Univerisity of Khuzestan

2 Department of Plant production of Genetics, Khuzestan University of Agricultural Sciences and Natural Resources.

3 Department of Agronomy and Plant Breeding, Faculty of Agriculture , Khouzestan agricultural and natural resources university, khouzestan, Iran

4 Ferdowsi Univ. Mashhad

5 Agricultural Sciences and Natural Resources, University of Khuzestan-Faculty of agriculture-Department of Plant Production and Genetics

Abstract

The aim of this study was to investigate the relationship between the morphometric characteristics of the seeds of different buckwheat (Fagopyrum esculentum Möench) lots obtained from different planting dates (29th Aug: 1, 13th Sep: 2, 28th Sep: 3 and 12th Oc: 4) with its seed germination quality under different temperature treatments. For each of seed lot, four separate experiments with 11 temperature levels including 4, 7, 10, 15, 20, 25, 30, 35, 37, 40 and 45 °C were carried out in a completely randomized design with 3 replications in seed science and technology laboratory of Agricultural Sciences and Natural Resources of Khuzestan University in 2022. The results of analysis of variance demonstrated that temperature has a significant effect at the level of 1% on germination rate index. According to the model parameters and of course the standard error, the segmented model was chosen as the best model. Based on this, according to the superior (segmented) model, the base, optimal and ceiling temperatures for lot 1 are 4.82, 34.24 and 44.82 degrees Celsius respectively, in lot 2 they are 4.18, 33.82 and 46 respectively. 44.0 degrees Celsius, in lot 3 it was estimated 5, 34.64 and 43.87 degrees Celsius respectively and in lot 4 it was estimated 5, 31.69 and 44.27 degrees Celsius respectively. Identify the cardinal temperatures can be of great help in managing the optimal sowing date of crops.

Keywords


Adam, N. R., D. A. Dierig, T. A. Coffelt, M. J. Wintermeyer, B. E. Mackey, and G. W. Wall. 2007. Cardinal temperatures for germination and early growth of two Lesquerella species. Ind. Crops Prod. 25: 24-33. DOI: 10.1016/j.indcrop.2006.06.001.
Ahmadvand, B., and S. A. Moosavi. 2022. Quantification of temperature effect on seed germination of Buckwheat (Fagopyrum esculentum Möench). 3 rd. International and 17th National Iranian Crop Science Congress January 25 – 27, Shahid-Bahonar University of Kerman, Iran. (In Persian, with English abstract)
Ambika, S., V. Manonmani, and G. Somasundaram. 2014. Review on effect of seed size on seedling vigour and seed yield. Res. J. Seed Sci. 7(2): 31-38. DOI: 10.3923/rjss.2014.31.38.
Babu, S., G. S. Yadav, R. Singh, R. K. Avasthe, A, Das, A, K. P. Mohapatra, and N. Prakash. 2018. Production technology and multifarious uses of buckwheat (Fagopyrum spp.): A Rev. Indian J. Agron. 63(4): 415-427.
Chacón, P. A. U. L. I. N. A., Bustamante, R. A. M. I. R. O., & Henríquez, C. A. R. O. L. I. N. A. 1998. The effect of seed size on germination and seedling growth of Cryptocarya alba (Lauraceae) in Chile. Revista Chilena de Historia Natural. 71(2): 189-197.
Childiyal, S.K., C.M. Sharma, and S. Gairola. 2009. Environmental variation in seed and seedling characteristics of Pinus roxburghii Sarg. From Uttaralhand, India. Appl. Ecol. Environ. Res. 7(2): 121-129. DOI: 10.15666/aeer/0702_121129.
FAOSTAT 2016. Crop production statistics. [Online] Available at http://faostat.fao.org/site/567/ DesktopDefault.aspx (accessed 1 September 2016).
Habibzadeh Zarandi, M, I, Allahdadi, H, Khalaj, and M. Labbafi. 2017. Application of nonlinear regression models for prediction of cardinal temperatures in seed germination of various cumin (Cuminum cyminum) ecotypes. Iranian J. Seed Sci. Technol. 6(1): 79-88.‏ (In Persian). DOI: 10.22034/ijsst.2017.113217.
Hashemi, A, F, Sharifzadeh, R, Maali Amiri, and R. Tavakkol Afshari. 2020. Evaluation of Germination of Safflower Seed (Carthamus tinctorius L.) Faraman Cultivar, Under Water Deficit Stress and Determination of Cardinal Germination Temperatures. Iranian J. Seed Sci. Technol. 9(3): 73-83. (In Persian). DOI: 10.22034/ijsst.2020.128718.1315.
Hashemi, A., R. Tavakkol Afshari, L. Tabrizi, and S. Barooti. 2022. Quantifying seed germination response of Plantago ovata under temperature and drought stress regimes. Iranian J. Seed Sci.Technol. 11(2): 33-42. DOI: 10.22092/ijsst.2020.107995.1006. (In Persian, with English Abstract)
Jameson, P. E and J. Song. 2016. Cytokinin: a key driver of seed yield. J. Exp. Bot. 67(3): 593-606. DOI: 10.1093/jxb/erv461.
Li, R., L. Chen, Y. Wu, R. Zhang, C. C. Baskin, J. M. Baskin, and X. Hu. 2017. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Frontiers in Plant Sci. 8: 1411. DOI: 10.3389/fpls.2017.01411
Mamedi, A., F. Sharifzadeh, and R. Maali Amiri. 2021. Evaluation of quinoa seed germination variability in response to temperature, drought, and salinity stresses. Iranian J. Seed Sci. Technol.:10(4):57-67. ‏ DOI: 10.22092/ijsst.2021.353918.1388. (In Persian, with English Abstract)
Mavi K. 2010. The relationship between seed coat color and seed quality in watermelon Crimson sweet. Hortic. Sci. 37: 62–69. DOI: 10.17221/53/2009-HORTSCI.
Moosavi, S. A., S. A. Siadat, A. Koochekzadeh, G. Parmoon, and S. Kiani. 2022. Effect of Seed Color and Size on Cardinal Temperatures of Castor Bean (Ricinus Communis L.) Seed Germination. Agrotechnique in Ind Crops. 2(1): 1-10. DOI: 10.22126/atic.2022.7417.1041.
Mwale S.S., S.N. Azam-Ali, J.A. Clark, R.G. Bradley, M.R. Chatha.1994. Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Sci. Technol. 22: 565–571.
Ordoñez-Salanueva, C. A., C. E. Seal, H. W. Pritchard, A. Orozco-Segovia, M. Canales-Martínez, and C. M. Flores-Ortiz. 2015. Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: effect of projected soil temperature increase and nurse interaction on germination timing. J. Arid Environ. 115: 73-80.  DOI: 10.1016/j.jaridenv.2015.01.006.
Piper, EL., K.J. Boote, J.W. Jones, and SS. Grimm. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci. 36: 1606–1614. DOI: 10.2135/cropsci1996.0011183X003600060033x.
Sampayo-Maldonado, S., C. A. Ordoñez-Salanueva, E. Mattana, T. Ulian, M. Way, E. Castillo-Lorenzo, and C. M. Flores-Ortíz. 2019. Thermal time and cardinal temperatures for germination of Cedrela odorata L. Forests. 10(10): 841. DOI: 10.3390/f10100841.
Shahi, C., K. B. Vibhuti, and S. S. Bargali. 2015. How seed size and water stress affect the seed germination and seedling growth in wheat varieties. Curr. Agric. Res. J. 3(1): 60-68. DOI: 10.12944/CARJ.3.1.08.
Siadat, S. A., S. A. Moosavi, G. Parmoon, and S. Kiani. 2021. Study the relationship between seed size and aging on cardinal temperatures of Canola. Iranian J. Seed Sci .Technol. 10(4): 119-135. (In Persian). DOI: 10.22092/ijsst.2020.351193.1352.
Small, E. 2017. 54. Buckwheat–the world’s most biodiversity-friendly crop? Biodiversity, 18(2-3): 108-123. DOI: 10.1080/14888386.2017.1332529.
Steiner F., A.M. Zuffo, A. Busch, T. de O. Sousa, and T. Zoz. 2019. Does seed size affect the germination rate and seedling growth of peanuts under salinity and water stress? Pesquisa Agropecuária Tropical 49:1-9. DOI: 10.1590/1983-40632019v4954353.
Tang, Y., M. Q. Ding, Y. X. Tang, Y. M. Wu, J. R. Shao, and M. L. Zhou. 2016. Germplasm resources of buckwheat in China. Pp. 13-20. In M. Zhou, S.-H. Woo, and G. Wieslander(eds.) Molecular breeding and nutritional aspects of buckwheat. Academic Press, Amsterdam. DOI: 10.1016/B978-0-12-803692-1.00002-X.
Yan, W., and L.A. Hunt. 1999. An equation for modeling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84(5): 607–614. DOI: 10.1006/anbo.1999.0955.
Yin X., M.J. Kropff, G. McLaren, R.M. Visperas. 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77(1-2): 1–16. DOI: 10.1016/0168-1923(95)02236-q
Zare, A., M. Malekpoor, and M. Arabizadeh. 2021. Determining Cardinal Temperature for Seed Germination of Four‏‏ Weeds Brassicaceae‎ Family. J. Crops Improvement, 23(2), 417-428.‏ DOI: 10.22059/jci.2021.301607.2387. (In Persian)
Zhu, F. 2016. Chemical composition and health effects of Tartary buckwheat. Food Chem. 203: 231-245.‏ DOI: 10.1016/j.foodchem.2016.02.050.