Document Type : Original Article

Authors

Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Iran

Abstract

This experiment was conducted in order to investigate the effect of seed coating with biochar and activated carbon on some quinoa seed germination indicators, and it was implemented as a factorial in the form of a completely randomized design with four replications in 2019, in Yasouj University's Faculty of Agriculture. The first factor is seed coating in four levels (no coating, coating with activated carbon, coating with biochar and coating with activated carbon + biochar) and the second factor includes salinity stress in four levels (zero, 75, 150 and 225 mM sodium chloride). The results of the interaction of salinity stress and seed coating showed that the highest content of soluble sugar (28.578 mg/g seed FW) and malondialdehyde (2.97 µmol/g seed FW) was obtained by coating with activated carbon in 150 mM salinity stress. Also, the highest amount of seed hydrogen peroxide (0.18 μmol/g seed FW) and proline (10.49 μmol/g seed FW) at the level of 225 mM sodium chloride was obtained by covering the seeds with biochar and active carbon, respectively. Covering seeds with activated carbon and biochar led to an increase in the length of root and shoot under salt stress conditions. However, under salinity stress conditions, root weight and length vigor index of seed improved more by coating seeds with activated carbon. It can be stated that seed coating can greatly reduce the harmful effects of osmotic stress on germination and biochemical traits in quinoa seedlings and improve seedling growth.

Keywords

 
References
Abdul-Baki, A., & Anderson, D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13, 630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
Accinelli, C., Abbas, H. K., & Shier, W. T. (2018). A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement, 32, 318–330. https://doi.org/10.1080/15427528.2018.1425792
Adolf, V. I., Jacobsen, S. E., & Shabala, S. (2012). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43–54. https://doi.org/10.1016/j.envexpbot.2012.07.004
Afzal, I., Rauf, S., Basra, S. M. A., & Murtaza, G. (2008). Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil & Environment, 9, 382–388. https://doi.org/10.17221/408-PSE
Akramian, M., Hosseini, A., Kazerooni, M., & Rezvani, M. J. (2007). Effect of seed osmopriming on germination and seedling development of fennel (Foeniculum vulgare Mill.). Iranian Journal of Field Crop Science, 5(1), 37–46. [In Persian]
Ansari Ardali, S., Nabipour, M., Roshanfekr, H. A., & Bagheri, M. (2021). Evaluation of quinoa (Chenopodium quinoa Wild.) cultivars in saline conditions using germination indices in controlled environment. Environmental Stress & Crop Science, 14, 475-475. [In Persian]
Behboudi, F., Tahmasebi Sarvestan, Z., Kassaee, M. Z., Modares Sanavi, A. S., Sorooshzade, A. M., & Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of Water Environment & Nanotechnology, 3(1), 22–39.
Bhardwaj, S. H., Sharma, N. K., Srivastava, P. K., & Shukla, G. (2010). Salt tolerance assessment in alfalfa (Medicago sativa L.) ecotypes. Journal of Botanical Research, 3, 1–6. https://doi.org/10.3923/brj.2010.1.6
Bhatt, A., Phondani, P. C., & Pompelli, M. F. (2016). Seed maturation time influences the germination requirements of perennial grasses in the desert climate of the Arabian Gulf. Saudi Journal of Biological Sciences, 25, 1562–1567. https://doi.org/10.1016/j.sjbs.2016.02.004
Bu, X. L., Xue, J. H., Wu, Y., & Wu, W. B. (2020). Effect of biochar on seed germination and seedling growth of Robinia pseudoacacia L. in Karst calcareous soils. Communication in Soil Science & Plant Analysis, 27, 1–13.
 
 
Cao, L., & Li, N. (2021). Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth. International Journal of Biological Macromolecules, 177, 383–391. https://doi.org/10.1016/j.ijbiomac.2021.02.097
Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot-grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404–418. https://doi.org/10.3390/agronomy3020404
Derbali, W., Goussia, R., Koyroc, H. W., Abdelly, C., & Manaa, A. (2020). Physiological and biochemical markers for screening salt-tolerant quinoa genotypes at early seedling stage. Journal of Plant Interactions, 15(1), 27–38. https://doi.org/10.1080/17429145.2020.1722266
Ebrahimi, O., Mohammad, M., Esmaeili, H., Sabouri, H., & Tahmasebi, A. (2012). Effects of salinity and drought stresses on germination of two rangeland plants: Agropyron elongatum and Agropyron desertorum. Desert Ecosystem Engineering Journal, 1, 31–38. [In Persian]
EL-Bassiouny, H. M. S., & Bekheta, M. A. (2007). Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids, and ethylene of two wheat cultivars. International Journal of Agriculture & Biology, 7(3), 363–368.
Farooq, M., Wahid, A., & Kadambot Siddique, H. M. (2015). Micronutrient application through seed treatments: A review. Journal of Soil Science & Plant Nutrition, 12(1), 125–142. https://doi.org/10.4067/S0718-95162012000100011
Free, H. F., McGill, C. R., Rowarth, J. S., & Hedley, M. J. (2010). The effect of biochars on maize (Zea mays) germination. New Zealand Journal of Agricultural Research, 53(1), 1–4. https://doi.org/10.1080/00288231003606039
Garcia, M., Condori, B., & Castillo, D. C. (2015). Agroecological and agronomic cultural practices of quinoa in South America. In K. Murphy & J. Matanguihan (Eds.), Quinoa: Improvement and sustainable production (pp. 25–46). John Wiley & Sons. https://doi.org/10.1002/9781118628041.ch3
Gupta, S., & Gupta, N. K. (2005). High temperature-induced antioxidative defense mechanisms in contrasting wheat seedlings. Indian Journal of Plant Physiology, 10, 73–75.
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 62, 185–193. https://doi.org/10.1093/jxb/erq257
Heath, R. L., & Pacher, L. (1968). Photooxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.
Heidari, F., Jalilian, J., & Gholinezhad, E. (2021). Impact of spraying nano-fertilizers and salinity stress on leaf and seed nutrient concentrations and physiological traits in quinoa (Chenopodium quinoa). Journal of Plant Production, 28, 103–116. [In Persian]
Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., & Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223–228. https://doi.org/10.1016/j.jenvman.2010.09.008
Ikić, I., Maričević, M., Tomasović, S., Gunjača, J., Šatović, Z., & Šarčević, H. (2012). The effect of germination temperature on seed dormancy in Croatian-grown winter wheats. Euphytica, 188, 25–34. https://doi.org/10.1007/s10681-012-0735-8
Irigoyen, J. J., Emerich, D. W., & Sanchez-Diaz, M. (1992). Water stress-induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Physiologia Plantarum, 84, 55–60. https://doi.org/10.1034/j.1399-3054.1992.840109.x
Javadi, A. (2020). Biological enrichment and seed coating: Basic solutions to improve seed quality. Javaneh, 16(4), 39–43. [In Persian]
Jumrani, K., & Bhatia, V. S. (2018). Combined effect of high temperature and water-deficit stress imposed at vegetative and reproductive stages on seed quality in soybean. Indian Journal of Plant Physiology, 23, 227–244. https://doi.org/10.1007/s40502-018-0365-9
Kafi, M., Borzoi, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2009). Physiology of environmental stresses in plants. University of Mashhad. [In Persian]
Karami, R., Ebrahimi, F., Balouchi, H., & Babaie, M. (2020). Improvement of germination behavior and seedling characteristics of two quinoa genotypes (Chenopodium quinoa Willd.) under the effect of salicylic acid and salt stress. Journal of Seed Research, 10(1), 53–66. [In Persian]
Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Sharma, S. S., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2019). Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plants. International Journal of Biological Macromolecules, 123, 59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202
Lehmann, J., Czimnik, C., Laird, B., & Sohi, S. (2009). Biochar for environmental management. Soil Science & Technology, 15, 183–206.
Liu, T., Liu, B., & Zhang, W. (2014). Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Polish Journal of Environmental Studies, 23(1), 271–275.
Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4), 1781–1787. https://doi.org/10.1104/pp.010497
Mansoori Gandomani, V., Heshmati, O., & Rezaei Charmahin, M. (2017). Application of chitosan on soybean (Glycine max L.) seed germination under salt stress. Iranian Journal of Seed Research, 3(2), 171–178. https://doi.org/10.29252/yujs.3.2.171 [In Persian]
Miller, T., & Chapman, S. J. (1978). Germination responses of three forage grasses to different concentrations of six salts. Journal of Range Management, 31(2), 123–124. https://doi.org/10.2307/3897659
Moomeni, K. (2017). Influence of bio-priming, hormone priming, and seed coating on the quality and germination characteristics of parsley seed (Petroselinum crispum). (M.Sc. Thesis, Faculty of Agriculture, Birjand University). [In Persian]
Mousavi, S. M., Omidi, H., & Mousavi, S. E. (2022). The effect of biological pre-treatments on germination, growth, and physiological indices of fenugreek (Trigonella foenum-graecum L.) seedlings under natural salinity stress. Iranian Journal of Seed Science & Technology, 11(1), 117–145. [In Persian]
Olszyk, D. M., Shiroyama, T., Novak, J., & Johnson, M. J. (2018). A rapid test for screening biochar effects on seed germination. Communications in Soil Science & Plant Analysis, 20, 1–18.
Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S., & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6, plu047. https://doi.org/10.1093/aobpla/plu047
Paquine, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la Libra dans les plantes. Canadian Journal of Botany, 57, 1851–1854. https://doi.org/10.1139/b79-233
Piri, R. (2016). The effect of bio-priming and seed coating on some germination and seedling growth indices of cumin (Cuminum cyminum L.) under drought stress [M.Sc. Thesis, Yasouj University]. [In Persian]
Razaei, N., Razzaghi, F., Sepaskhah, A. R., & Moosavi, A. A. A. (2018). Effect of biochar and saline irrigation water on chemical properties of soil under faba bean cultivation. Iranian Journal of Soil Research, 32, 13–24. [In Persian]
Różyło, K., Świeca, M., Gawlik-Dziki, U., & Stefaniuk, M. (2017). The potential of biochar for reducing the negative effects of soil contamination on the phytochemical properties and heavy metal accumulation in wheat grain. Agricultural and Food Science, 26(1), 34–46. https://doi.org/10.23986/afsci.59308
Salek Mearaji, H., Tavakoli, A., Ghanimati, S., & Kasirlou, P. (2019). The effect of salinity stress on traits related to germination of quinoa (Chenopodium quinoa Willd.). Journal of Agroecology, 15(3), 59–69. [In Persian]
Seilsepour, M. (2021). Effects of different water salinity levels on germination characteristics of two quinoa cultivars (Chenopodium quinoa Willd). Journal of Water Research in Agriculture, 35, 387–301. [In Persian]
Shakeri, F., Rastgar, S., & Hassanzadeh Khankahdani, H. (2022). Assessment of seed germination and morphological characteristics of three quinoa (Chenopodium quinoa Willd.) cultivars under salinity stress. Environmental Stresses in Crop Sciences, 15, 751–763. [In Persian]
Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231–238. https://doi.org/10.1016/j.eja.2011.01.006
Verma, S. K., Bjpai, G. C., Tewari, S. K., & Singh, J. (2005). Seedling index and yield as influenced by seed size in pigeon pea. Legume Research, 28(2), 143–145.
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & Skz, A. (2016). Enhancement of drought stress tolerance in crops by plant growth-promoting rhizobacteria. American Journal of Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
Zadehbagheri, M., Javanmardi, S. H., & Kamelmanesh, M. (2015). Effect of seed priming on the germination of forage maize under salt stress. Journal of New Findings in Agriculture, 9(4), 253–260.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy in the Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139, 469–475. https://doi.org/10.1016/j.agee.2010.09.003
Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38. https://doi.org/10.1111/plb.12884