Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi Uneversity.

2 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi university, Kermanshah, Iran.

3 Professor/Plant Production and Genetics Dept., Faculty of Science and Agricultural Engineering, Univ. of Razi, Kermanshah, Iran

Abstract

Drought is one of the most important stresses in reducing plant growth, especially in the seed germination stage. Oxidative stress is one of the consequences of drought in plants. To investigate the reduction of oxidative stress damage caused by drought stress by using silicon in the initial stages of camellia seedling growth, a factorial experiment as completely randomized design was carried out in the seed laboratory of Razi University with three replications. The factors include two camelina genotypes, four levels of drought stress (0, -3, -6, -9 bar using PEG-6000) and five levels of silicon (0, 2, 4, 6 and 8 mM). According to the results, drought stress increased the activity of antioxidant enzymes including peroxidase, catalase and superoxide dismutase and the amount of malondialdehyde, but it decreased the growth characteristics of seedlings and the amount of soluble proteins. The consumption of silicon (especially by 6 and 8 mM concentrations) increased the activity of antioxidant enzymes and seedling growth characteristics. So, consumption of 8 mM silicon increased peroxidase activity by 23.2%, catalase activity by 13.4%, superoxide dismutase activity by 41%, malondialdehyde by 19.1% and protein content. Soluble was 10.8%. Therefore, the consumption of silicon 8mM by activating the antioxidant system moderated the effects of oxidative stress caused by drought stress and increased the growth characteristics of camellia seedlings.

Keywords

Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., & Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to water logging. Plant Science, 163(1), 117-123. https://doi.org/10.1016/S0168-9452(02)00080-8
Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664-674. https://doi.org/10.1016/j.tplants.2010.08.002
Alen, S. G., Dobrenz, A. K., Schonhorst, M. H., & Stoner, J. E. (1985). Heritability of NaCl tolerance in germination of alfalfa seeds. Agronomy Journal, 77, 99-101. https://doi.org/10.2134/agronj1985.00021962007700010023x
Bahrololoomi, S. M. J., Raini Sarjaz, M., & Pirdashti, H. A. (2019). The effect of drought stress on enzyme antioxidant activity, malondialdehyde, soluble protein and total nitrogen of soybean (Glycine max L.) leaves. Environmental Stresses in Crop Sciences, 12(1), 17-28.https://doi.org/10.22077/escs.2018.1316.1271
Balakhnina, T., & Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: Review. International Agrophysics, 27(2), 225-232. https://doi.org/10.2478/v10247-012-0089-4
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidant, oxidative damage and oxygen deprivation in salt-sensitive maize: A review. Annals of Botany, 91(2), 179-194. https://doi.org/10.1093/aob/mcf118
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Annual Review of Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
 
 
 
Chance, B., & Maehly, A. C. (1995). Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8
De Araujo Silva, M. M., Willadino, L., dos Santos, D. Y. A. C., Oliveira, A. F. M., & Camara, T. R. (2015). Response of Ricinus communis L. to in vitro water stress induced by polyethylene glycol. Plant Growth Regulation, 78, 195-204. https://doi.org/10.1007/s10725-015-0085-3
Del Rio, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gomez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 53(372), 1255-1272. https://doi.org/10.1093/jexbot/53.372.1255
Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673-689. https://doi.org/10.1007/s00018-014-1767-0
Garcia, M. I., Cruz, S. F., Saavedra, A. L., & Hernandez, M. S. (2002). Extraction of auxin-like substances from compost. Crop Research, 24, 323-327.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313–321. https://doi.org/10.1016/j.plantsci.2005.02.023
Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Romheld, V., Mimmo, T., Scampicchio, M., Costa, L. D., & Cesco, S. (2012). Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry, 56, 14-23. https://doi.org/10.1016/j.plaphy.2012.04.002
Gratao, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal stressed plants a little easier. Functional Plant Biology, 32(6), 481-494. https://doi.org/10.1071/FP05016
Gupta, A. K., Singh, J., Kaur, N., & Singh, R. (1993). Effect of polyethyleneglycol-induced water stress on uptake interconversion and transport of sugars in chickpea seedlings. Plant Physiology and Biochemistry, 31(5), 743-747.
Gupta, A. K., Singh, J., Kaur, N., & Singh, R. (1993). Effect of polyethyleneglycol-induced water stress on uptake interconversion and transport of sugars in chickpea seedlings. Plant Physiology and Biochemistry, 31(5), 743-747.
Heidari, N., & Pooryousef, M. (2011). Effect of seed priming with polyethylene glycol and sodium chloride on germination and growth indices of Pimpinella anisum L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 509-516. https://doi.org/10.22092/ijmapr.2011.6391 [In Persian]
Heidari, N., & Pooryousef, M. (2011). Effect of seed priming with polyethylene glycol and sodium chloride on germination and growth indices of Pimpinella anisum L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 509-516. https://doi.org/10.22092/ijmapr.2011.6391 [In Persian]
Helal, R. M., & Samir, M. A. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1), 31-36.
Helal, R. M., & Samir, M. A. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1), 31-36.
Hodges, M. D., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. https://doi.org/10.1007/s004250050524
Hodges, M. D., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. https://doi.org/10.1007/s004250050524
Hojati, M., Modarres-Sanavy, A. M. M., Karimi, M., & Ghanati, F. (2011). Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologia Plantarum, 33(1), 105-112. https://doi.org/10.1007/s11738-010-0521-y
Hojati, M., Modarres-Sanavy, A. M. M., Karimi, M., & Ghanati, F. (2011). Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologia Plantarum, 33(1), 105-112. https://doi.org/10.1007/s11738-010-0521-y
International Seed Testing Association (ISTA). (2003). Handbook for seedling evaluation (3rd ed.).
International Seed Testing Association (ISTA). (2003). Handbook for seedling evaluation (3rd ed.).
Jabari, F., Ahmadi, A., Poustini, K., Alizadeh, H., Sharifzadeh, F., & Ranjbar, M. (2009). Evaluation of relationship between relative water content and gas exchange parameters with drought resistance in 7 wheat cultivars. Iranian Journal of Field Crop Science, 40(2), 198-207. [In Persian]
Jabari, F., Ahmadi, A., Poustini, K., Alizadeh, H., Sharifzadeh, F., & Ranjbar, M. (2009). Evaluation of relationship between relative water content and gas exchange parameters with drought resistance in 7 wheat cultivars. Iranian Journal of Field Crop Science, 40(2), 198-207. [In Persian]
Kahrizi, D., & Rostami-Ahmadvandi, H. (2018). The third festival of introducing new agricultural and horticultural varieties. Research Institute for Breeding and Preparation of Seedlings and Seeds, 105-107. [In Persian]
Kahrizi, D., & Rostami-Ahmadvandi, H. (2018). The third festival of introducing new agricultural and horticultural varieties. Research Institute for Breeding and Preparation of Seedlings and Seeds, 105-107. [In Persian]
Khoshgoftarmanesh, A. H. (2007). Basics of plant nutrition. Isfahan University of Technology. [In Persian]
Khosrowshahi, Z. T., Ghassemi-Golezani, K., Salehi-Lisar, S. Y., & Motafakkerazad, R. (2020). Changes in antioxidants and leaf pigments of safflower (Carthamus tinctorius L.) affected by exogenous spermine under water deficit. Biologia Futura, 71, 313-321. https://doi.org/10.1007/s42977-020-00039-z
Liang, Y. C., Chen, Q., Lui, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt stress barley (Hordeum vulgare L.). Journal of Plant Physiology, 160(10), 1157-1164. https://doi.org/10.1078/0176-1617-01065
Miao, B. H., Han, X. G., & Zhang, W. H. (2010). The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany, 105, 967-973. https://doi.org/10.1093/aob/mcq063
Michel, B. F., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. https://doi.org/10.1104/pp.51.5.914
Mohammadi, N., Baghizadeh, A., & Rajai, P. (2015). The effect of beta-aminobutyric acid on relative water content, osmotic regulation, and antioxidant enzyme activity in rapeseed (Brassica napus L.) under drought stress. Journal of Plant Research, 28, 860-844. [In Persian]
Naderi, R., Valizadeh, M., Toorchi, M., & Shakiba, M. R. (2014). Antioxidant enzyme changes in response to osmotic stress in wheat (Triticum aestivum L.) seedlings. Acta Biologica Szegediensis, 58(2), 95-101. [In Persian]
Namjoyan, S., Sorooshzadeh, A., Rajabi, A., & Aghaalikhani, M. (2020). Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiologiae Plantarum, 42(10), 1–16. https://doi.org/10.1007/s11738-020-03137-6
Ning, D., Qin, A., Liu, Z., Duan, A., Xiao, J., Zhang, J., Liu, Z., Zhao, B., & Liu, Z. (2020). Silicon-mediated physiological and agronomic responses of maize to drought stress imposed at the vegetative and reproductive stages. Agronomy, 10(8), 1136. https://doi.org/10.3390/agronomy10081136
Nojavan, A. M., & Khorshidi, M. (2006). An investigation of vanillin-imposed oxidative stress in corn (Zea mays L.) and the activities of antioxidative enzymes. Pakistan Journal of Biological Sciences, 9, 34-38. https://doi.org/10.3923/pjbs.2006.34.38
Parsa, B., Abbasdokht, H., Gholami, A., & Faraji, A. (2017). The effect of Bradyrhizobium japonicum, mycorrhiza, and chemical fertilizer on quantitative and qualitative characteristics of soybean (Glycine max L. cultivar Katoul) in conditions of presence and absence of weeds. Weed Research Journal, 9(1), 33-48. [In Persian]
Parveen, A., Liu, W., Hussain, S., Asghar, J., Perveen, S., & Xiong, Y. (2019). Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants, 8(10), 431. https://doi.org/10.3390/plants8100431
Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2018). Effects of drought stress on the seedling growth, development, and metabolic activity in different cultivars of canola. Soil Science and Plant Nutrition, 64(3), 360–369. https://doi.org/10.1080/00380768.2018.1436407
Saed-Moucheshi, A., & Safari, H. (2022). Superoxide dismutase enzyme expression in root and shoot of triticale seedlings under drought stress conditions. Cereal Biotechnology and Biochemistry, 1(4), 481-495. https://doi.org/10.22126/cbb.2023.8680.1033 [In Persian]
Sajedi, N. A., Ferasat, M., Mirzakhani, M., & Boojar, M. M. A. (2012). Impact of water deficit stress on biochemical characteristics of safflower cultivars. Physiology and Molecular Biology of Plants, 18, 323-329. https://doi.org/10.1007/s12298-012-0129-3
Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46(3), 209-221.
Shawquat, A. K. M., Abdul Karim, M., Abdullah, A. M., Shahana, P., Mahfuz, M. B., & Altaf, M. H. (2015). Plant water relations and proline accumulation in soybean under salt and water stress environments. Journal of Plant Sciences, 3(5), 272-278. https://doi.org/10.11648/j.jps.20150305.15
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., et al. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science, 7, 196. https://doi.org/10.3389/fpls.2016.00196
Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H., & Gong, H. (2014). Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 78, 27–36. https://doi.org/10.1016/j.plaphy.2014.02.009
Sinha, A. K. (1972). Colorimetric assay of catalase.
Analytical Biochemistry, 47(2), 389-394.
Siosemardeh, A., Khalundi, M., Bahram Nejad, B., & Ruhi, I. (2012). The effect of drought stress on gas exchange, leaf soluble proteins, and chlorophyll content in Sardari wheat ecotypes. Journal of Crop Plant Sciences of Iran, 43(4), 588-573. [In Persian]
Taleahmad, S., & Haddad, R. (2010). Effect of silicon on antioxidant enzymes activities and osmotic adjustment contents in two bread wheat genotypes under drought stress conditions. Seed and Plant Production Journal, 26(2), 225-207. https://doi.org/10.22092/sppj.2017.110404 [In Persian]
Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell, 14, 165-183. https://doi.org/10.1105/tpc.000596
Yang, H., Zhao, L., Zhao, S., Wang, J., & Shi, H. (2017). Biochemical and transcriptomic analyses of drought stress responses of LY1306 tobacco strain. Scientific Reports, 7, 1-10.
Zafari, M., Ebadi, A., Jahanbakhsh, S., & Sedghi, M. (2020). Safflower (Carthamus tinctorius L.) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of Agricultural and Food Chemistry, 68, 6040-6047. https://doi.org/10.1021/acs.jafc.9b06860
Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B., & Li, Z. (2006). Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones, and antioxidant system. Journal of Plant Physiology, 164(6), 709-717. https://doi.org/10.1016/j.jplph.2006.04.008
Zhang, W., Xie, Z., Lang, D., Cui, J., & Zhang, X. (2017). Beneficial effects of silicon on abiotic stress tolerance in legumes. Journal of Plant Nutrition, 40(15), 2224-2236. https://doi.org/10.1080/01904167.2017.1346127