Document Type : Original Article

Authors

1 Research Assistant Professor, Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

2 Research Faculty Member, Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

3 Senior Expert in Laboratory, Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Abstract

Camelina Cv. Soheil seed storability was assessed to simulate after-harvest condition till the following growing season. Seven seed samples were collected from Shirvan, Fasa, Marvdasht, Kermanshah, Hamedan, Sabzevar, and Ilam regions and saved for six months in two storage condition (with two temperatures of 10 and 25ºC). Then, they were drow out monthly from storage condition to evaluate different seed germination index and vigour. Moisture seed content did not acced more than 10 percent in all treatments. Germination percentage and normal seedlings were more than 94% after 6 months of storage in all seed samples and two temperatures. Weight seedling vigour showed no significant differences in all samples, except the Sabzevar sample. The effects of three factors (seed samples, temperature and storage time) on rate germination index were difference. Seed physiological responses (in terms of rate germination) to 10 and 25ºC temperatures were similar until the fourth months in more samples. However, a declining process was observed from the fourth month at 25ºC and from the fifth month at 10ºC for these responses and accend minimum in six months. Two seed samples of Hamedan and Kermanshah showed higher rate of germination. In total, Camelina seeds showed high storage potential due to high germination percentage was recorded after six months of storage. In addition, if seeds stored for more than 4 months, plants in field condition lower germination rate will observe.

Keywords

Aminbaigi, A., Jalilian, J., Chaghazardi, H., Kahrizi, D., & Khalilzadeh, R. (2023). Evaluation of different fertilizer sources effect on yield, forage quality and oil of camelina (Camelina sativa L.) under water deficit stress. Journal of Agricultural Science and Sustainable Production, 33(2), 1–14. https://doi.org/10.22034/SAPS.2022.50509.2831 [In Persian]
Association of Official Seed Analysts. (1983). Seed vigor testing handbook. Contribution No. 32 to the handbook on seed testing.
Balesevic-Tubic, S., Tatic, M., Dordevic, V., Nikolic, Z., & Dukic, V. (2010). Seed viability of oil crops depending on storage conditions. Helianthus, 33(52), 153–160. https://doi.org/10.2298/HEL1052153b
Balesevic-Tubic, S., Tatic, M., Miladinovic, J., & Pucarevic, M. (2007). Changes of fatty acids content and vigor of sunflower seed during natural aging. Helia, 30(47), 61–67. https://doi.org/10.2298/HEL0747061B
Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034
Catao, H. C. R. M., Gomes, L. A. A., Guimaraes, R. M., Fonseca, H. F. P., Caixeta, F., & Galvao, A. G. (2018). Physiological and biochemical changes in lettuce seeds during storage at different temperatures. Horticultura Brasileira, 36, 118–125. https://doi.org/10.1590/S0102-053620180120
Chaturvedi, S., Bhattacharya, A., Khare, S. K., & Kaushik, G. (2019). Camelina sativa: An emerging biofuel crop. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1–38). Springer.
Cheshmehsefid, R., & Khajeh Hosseini, M. (2022). Investigation on storage potential of camelina (Camelina sativa L.) seeds. ISTA Seed Symposium. Greece, 2022-11-02.
Chiu, R., Nahal, H., Provart, N., & Gazzarrini, S. (2012). The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology, 12, 15. https://doi.org/10.1186/1471-2229-12-15
 
 
 
Egli, D. B., TeKrony, D. M., Heitholt, J. J., & Rupe, J. (2005). Air temperature during seed filling and soybean seed germination and vigor. Crop Science, 45https://doi.org/10.2135/cropsci2004.0029
Fangshan, X., Xianguo, W., Manli, L., & Peisheng, M. (2015). Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents. Plant Physiology and Biochemistry, 94, 122–129. https://doi.org/10.1016/j.plaphy.2015.06.002
Gawrysiak-Witulska, M., Siger, A., & Nogala-Kalucka, M. (2009). Degradation of tocopherols during near-ambient rapeseed drying. Journal of Food Lipids, 16, 524–539. https://doi.org/10.1111/j.1745-4522.2009.01164.x
Groot, P. C., Surki, A. A., de Vos, R. C. H., & Kodde, J. (2012). Seed storage at elevated partial pressure of oxygen: A fast method for analyzing seed ageing under dry conditions. Annals of Botany, 110(6), 1149–1159. https://doi.org/10.1093/aob/mcs198
Guo, C., Shen, Y., & Shi, F. (2020). Effect of temperature, light, and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests, 11, 1–16. https://doi.org/10.3390/f11030300
Huang, Y., Lin, C., He, F., Li, Z., Guan, Y., Hu, Q. J., & Hu, J. (2017). Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2, and relevant gene expression. BMC Plant Biology, 17(1), 1–16. https://doi.org/10.1186/s12870-016-0951-9
International Seed Testing Association. (2022). International rules for seed testing.
Kapoor, N., Aria, A., Siddiqui, M. A., Kumar, H., & Amir, A. (2011). Physiological and biochemical changes during seed deterioration in aged seeds of rice. American Journal of Plant Physiology, 6, 28–35. https://doi.org/10.3923/ajpp.2011.28.35
Krzyżaniak, M., Stolarski, M. J., Tworkowski, J., Puttick, D., Eynck, C., Załuski, D., & Kwiatkowski, J. (2019). Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products, 138, 111443. https://doi.org/10.1016/j.indcrop.2019.06.006
Lozano-Isla, F., Campos, M. L. O., Endres, L., Bezerra-Neto, E., & Pompelli, M. F. (2018). Effects of seed storage time and salt stress on the germination of Jatropha curcas L. Industrial Crops and Products, 118, 214–224. https://doi.org/10.1016/j.indcrop.2018.03.052
Nagel, M., Pistrick, J., Mascher, M., Bröner, A., & Groot, S. P. C. (2016). Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Frontiers in Plant Science, 7, 1–11. https://doi.org/10.3389/fpls.2016.00388
Obeng, E., Obour, A. K., Nelson, N. O., Moreno, J. A., Ciampitti, I. A., Wang, D., & Durrett, T. P. (2019). Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 33, 202–222. https://doi.org/10.1080/15427528.2019.1566186
Rajjou, L., Lovigny, Y., Groot, S. P. C., Belghazi, M., Job, C., & Job, D. (2008). Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiology, 148, 620–641. https://doi.org/10.1104/pp.108.123141
Ranal, M., & De Santana, D. G. (2006). How and why to measure the germination process? Revista Brasileira de Botânica, 29(1), 1–11. https://doi.org/10.1590/S0100-84042006000100002
Righini, D., Zanetti, F., & Monti, A. (2016). The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. Oils and Fats, Crops and Lipids, 23, D504. https://doi.org/10.1051/ocl/2016021
Singh, J., Paroha, S., & Prakash Mishra, R. (2017). Factors affecting oilseed quality during storage with special reference to soybean (Glycine max) and niger (Guizotia abyssinica) seeds. International Journal of Current Microbiology and Applied Sciences, 6(10), 2215–2226. https://doi.org/10.20546/ijcmas.2017.610.262
Shelar, V. R., Shaikh, R. S., & Nikam, A. S. (2008). Soybean seed quality during storage: A review. Agricultural Reviews, 29(2), 125–131. https://arccarticles.s3.amazonaws.com/webArticle/articles/ar292006.pdf
Soltani, A., & Maddah, V. (2010). Simple, applied programs for education and research in agronomy. Shahid Beheshti University Press. [In Persian]
Stefanoni, W., Latterini, F., Ruiz, J., Bergonzoli, S., Palmieri, N., & Pari, L. (2021). Assessing the camelina (Camelina sativa (L.) Crantz) seed harvesting using a combine harvester: A case study on the assessment of work performance and seed loss. Sustainability, 13(1), 195. https://doi.org/10.3390/su13010195
Teimoori, N., Ghobadi, M., & Kahrizi, D. (2023). Improving the growth characteristics and grain production of camelina (Camelina sativa L.) under salinity stress by silicon foliar application. Agrotechniques in Industrial Crops, 3(1), 1–13. https://doi.org/10.22126/ATIC.2023.8681.1081 [In Persian]
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., & Tamura, N. (2008). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 146, 1368–1385. https://doi.org/10.1104/pp.107.113738
Veljkovic, V. B., Kostic, M. D., & Stamenkovic, O. S. (2022). Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 178, 114539. https://doi.org/10.1016/j.indcrop.2022.114539
Walia, M. K., Zanetti, F., Gesch, R. W., Krzyżaniak, M., Eynck, C., Puttick, D., Alexopoulou, E., Royo-Esnal, A., Stolarski, M. J., Isbell, T., & Monti, A. (2021). Winter camelina seed quality in different growing environments across North America and Europe. Industrial Crops and Products, 169, 113639. https://doi.org/10.1016/j.indcrop.2021.113639
Wawrzyniak, M., Michalak, M., & Chmielarz, P. (2020). Effect of different conditions of storage on seed viability and seedling growth of six European wild fruit woody plants. Annals of Forest Science, 77, 58. https://doi.org/10.1007/s13595-020-00963-z
Yuan, L., & Li, R. (2020). Metabolic engineering of a model oilseed Camelina sativa for the sustainable production of high-value designed oils. Frontiers in Plant Science, 11, 11–24. https://doi.org/10.3389/fpls.2020.00011
Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. Agronomy for Sustainable Development, 41, 2. https://doi.org/10.1007/s13593-020-00663-y
Zarei, Sh., Hassibi, P., Kahrizi, D., & Safieddin Ardebili, S. M. (2022). Effect of nitrogen application on camelina (Camelina sativa) oil seed yield and yield components at different planting dates. Iranian Journal of Field Crops Research, 19(4), 311–325. https://doi.org/10.22067/JCESC.2021.37179.0 [In Persian]
Zinsmeister, J., Leprince, O., & Buitink, J. (2020). Molecular and environmental factors regulating seed longevity. Biochemical Journal, 477(2), 305–323. https://doi.org/10.1042/BCJ20190165