Document Type : Original Article

Authors

1 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Science and Resources University, Sari, Iran

2 Department of Agronomy, Faculty of Agricultural Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran

3 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

In order to investigate the effect of pretreatment of seeds with organic fertilizers on germination and seedling indices of three cultivar of black cumin seed, a factorial experiment was conducted in the form of a completely randomized block design in four replications in 2021. The treatments of this experiment were cultivar in three levels (Iranian, Indian and Syrian) and seed pretreatment in three levels of organic fertilizers: humic acid, biozinc and control (without pretreatment). Characteristics of germination percentage and rate, germination uniformity, root, shoot and seedling length, fresh and dry weight of root, shoot and seedling, seedling tissue water content, seedling length vigour index and allometric coefficient were measured. The results showed that the studied treatments and their interaction had a significant effect on most of the measured traits. The maximum and minimum germination percentages (93.67% and 83.33%, respectively) were allocated to Iranian and Indian cultivars; while the maximum germination uniformity (256.79 hours) was obtained in the Syrian cultivar pretreated with humic acid and the minimum germination uniformity (134.40 hours) was obtained in both Iranian cultivar without pretreatment and the Iranian cultivar pretreated with biozinc. Also, the highest seedling length and seedling length vigour index were recorded in Iranian cultivars pretreated with humic acid (4.20 cm and 400.21), respectively, and the lowest ones (1.42 cm and 113.01) in Syrian cultivar pretreated with biozinc. In general, in the present study, the effect of seed pretreatment using humic acid as organic fertilizer was positive in many germination indexes.

Keywords

Abdual-Baki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13, 222-226. https://doi.org/10.2135/cropsci1973.0011183X001300020023x
Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46(1), 27-34. https://doi.org/10.17221/67/2009-CJGPB
Afzal, I., Basra, S. M. A., Cheema, M. A., Farooq, M., Jafar, M. Z., Shahid, M., & Yasmeen, A. (2013). Seed priming: A shotgun approach for alleviation of salt stress in wheat. International Journal of Agriculture and Biology, 15(6), 1199-1203. https://squ.elsevierpure.com/en/publications/seed-priming-a-shotgun-approach-for-alleviation-of-salt-stress-in
Afzal, I., Javed, T., Amirkhani, M., & Taylor, A. G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture, 10(11), 526. https://doi.org/10.3390/agriculture10110526
Ajouri, A., Asgedom, H., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167, 630-636. https://doi.org/10.1002/jpln.200420425
Akhgari, H., & Kaviani, B. (2019). Effect of priming on seed and seedling vigor in two rice cultivars (Oryza sativa L.). Iranian Journal of Seed Sciences and Technology, 8(1), 1-17. https://doi.org/10.22034/ijsst.2019.109014.1043. [In Persian]
Amiri, M. B., Rezvani Moghadam, P., & Jahan, M. (2017). Effect of organic acids, mycorrhiza, and rhizobacteria on yield and some phytochemical characteristics of Echium amoenum in low input cropping systems. Agricultural Science and Sustainable Production, 27(1), 45-61. https://sustainagriculture.tabrizu.ac.ir/article_6075.html?lang=en. [In Persian]
Amirkhani, M., Netravali, A. N., Huang, W., & Taylor, A. G. (2016). Investigation of soy protein-based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience, 51, 1121-1126. https://doi.org/10.21273/HORTSCI10913-16
AOCS. (1993). Official methods and recommended practices of the American Oil Chemists' Society. AOCS Press.
Association of Official Seed Analysts. (1983). Seed vigor testing handbook (Handbook No. 32). AOSA.
Balouchi, H. R., Bagheri, F., Kayednezami, R., Movahedi Dehnavi, M., & Yadavi, A. R. (2014). Effect of seed aging on germination and seedling growth indices in three cultivars of Brassica napus L. Plant Research, 26(4), 397-411. https://www.researchgate.net/publication/264553091. [In Persian]
Batmani, S., Tajbakhsh, M., & Ghiyasi, M. (2016). The effect of pre-sowing treatments on germination and its indicators in fenugreek. In Proceedings of the 4th International Conference on Applied Research in Agricultural Sciences. Tehran, Iran. https://www.researchgate.net/publication/317681065 [In Persian]
 
Bayat, M., Rahmani, A., Amirnia, R., & Alavi Siney, S. M. (2014). Determining the best method and time of priming of Echinacea purpurea seed in vitro and pot conditions. Iranian Journal of Seed Sciences and Research, 1(1), 1-15. [In Persian]
Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1), 1-17. https://doi.org/10.1007/s11104-007-9466-3
Caravaca, F., Figueroa, D., Alguacil, M. M., & Rolan, A. (2003). Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresource Technology, 90(1), 65-70. https://doi.org/10.1016/S0960-8524(03)00087-7
Chandrika, K. S. V. P., Prasad, R. D., & Godbole, V. (2019). Development of chitosan-PEG blended films using Trichoderma: Enhancement of antimicrobial activity and seed quality. International Journal of Biological Macromolecules, 126, 282-290. https://doi.org/10.1016/j.ijbiomac.2018.12.208
Cheng, Z., & Bradford, K. J. (1999). Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50(330), 89-99. https://doi.org/10.1093/jxb/50.330.89
Matthews, S. (2002). Copeland, L. O., & McDonald, M. B. Principles of seed science and technology (4th ed.). Annals of Botany, 89(6), 798-798. https://doi.org/10.1093/aob/mcf127
Dalvand, M., Solgi, M., & Khaleghi, A. (2018). Effects of foliar application of humic acid and drought stress on growth and physiological characteristics of marigold (Tagetes erecta). Journal of Soil and Plant Interactions, 9(2), 67-80. [In Persian]
Egamberdiyeva, D. (2005). Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: Biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science, 168, 94-99. https://doi.org/10.1002/jpln.200321283
Ehteshami, S. M. R., & Kianinezhad, H. (2017). Effect of nutripriming on seed germination percentage and seedling establishment of crops: A review. Iranian Journal of Seed Sciences and Research, 3(4), 117-131. https://civilica.com/doc/888248 [In Persian]
Farooq, M., Wahid, A., & Kadambot Siddique, H. M. (2012). Micronutrient application through seed treatments: A review. Journal of Soil Science and Plant Nutrition, 12(1), 125-142. http://dx.doi.org/10.4067/S0718-95162012000100011
Farzaneh, S., Khodadadi, S. H., Khomari, S., & Barmaki, M. (2021). Effect of seed coating with compounds of micronutrient elements, growth stimulants, and regulators on the emergence and early stages of sugar beet growth. Iranian Journal of Seed Sciences and Technology, 10(1), 103-122. https://doi.org/10.22092/ijsst.2021.123801 [In Persian]
Fu, J., & Huang, B. (2001). Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environment and Experimental Botany, 45(2), 105-114. https://doi.org/10.1016/S0098-8472(00)00084-8
Gorim, L. Y. (2014). Effects of seed coating on germination and early seedling growth in cereals (Doctoral dissertation). University of Hohenheim.
Harris, D., Joshi, A., Khan, P. A., Gothkar, P., & Sodhi, P. S. (1999). On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice, and chickpea in India using participatory methods. Experimental Agriculture, 35(1), 15-29. https://doi.org/10.1017/S0014479799001027
Hussain, F. (1989). Field and laboratory manual of plant ecology. National Academy of Higher Education, University Grants Commission.
International Seed Testing Association. (2008). Handbook of vigor test methods (2nd ed.). International Seed Testing Association.
Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., Aziz, T., & Shahid, M. (2011). Improving the performance of wheat by seed priming under saline conditions. Agronomy and Crop Science, 20, 1-8. https://doi.org/10.1111/j.1439-037X.2011.00485.x
Jamal, A., Moon, Y. S., & Zainul-Abdin, M. (2010). Sulfur: A general overview and interaction with nitrogen. Australian Journal of Crop Science, 4(7), 523-529. https://www.researchgate.net/publication/228481225
Kabiri, R., Nasibi, F., & Farahbakhsh, H. (2013). Study of some oxidative parameters induced by drought stress in Nigella sativa under hydroponic culture. Journal of Plant Process and Function, 2(3), 11-19. http://jispp.iut.ac.ir/article-1-82-fa.html [In Persian]
Kangsopa, J., Hynes, R. K., & Siri, B. (2018). Lettuce seeds pelleting: A new bilayer matrix for lettuce (Lactuca sativa) seeds. Seed Science and Technology, 46(3), 521-531. https://doi.org/10.15258/sst.2018.46.3.09
Kimmelshue, C., Goggi, A. S., & Cademartiri, R. (2019). The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-54068-3
Maguire, J. D. (1962). Seed germination: Aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Malekzade, S., Fallah, S., & Azari, A. (2017). The role of zinc sulfate and potassium nitrate on seed germination parameters improvement of black cumin (Nigella sativa) medicinal plant. Plant Production Technology, 8(2), 139-151. https://doi.org/10.22084/ppt.2016.1861 [In Persian]
Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). Academic Press.
McDonald, M. B. (2000). Seed priming. In M. Black & J. D. Bewley (Eds.), Seed technology and its biological basis (pp. 287-325). Sheffield Academic Press.
Mohammad, A., & Rafiei, M. (2011). The effect of different concentrations of humic acid on seed germination behavior and vigor of barley. Journal of Basic and Applied Science, 5(12), 610-613.
Mohammadpour, M., & Nabipour, A. (2011). Investigating the effect of light and temperature on the germination characteristics of black seed (Nigella sativa L). In Proceedings of the National Conference of Medicinal Plants (March 1). Sari, Iran. https://civilica.com/doc/342117 [In Persian]
Mondal, S., & Bose, B. (2019). Impact of micronutrient seed priming on germination, growth, development, nutritional status, and yield aspects of plants. Journal of Plant Nutrition, 42(19), 2577-2599. https://doi.org/10.1080/01904167.2019.1655032
Nascimento, W. M., & Aragão, F. A. S. (2004). Muskmelon seed priming in relation to seed vigor. Scientia Agricola, 61(1), 663-669. https://doi.org/10.1590/S0103-90162004000100019
Nascimento, W. M. (2003). Muskmelon seed germination and seedling development in response to seed priming. Scientia Agricola, 60(1), 71-75. https://doi.org/10.1590/S0103-90162003000100011
Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766
Nouriyani, H. (2019). Effect of seed priming on germination characteristics, biochemical changes, and early seedling growth of sesame (Sesamum indicum). Seed Research, 5(2), 43-58. http://dx.doi.org/10.29252/yujs.5.2.43 [In Persian]
Pedrini, S., Merritt, D. J., Stevens, J., & Dixon, K. (2017). Seed coating: Science or marketing spin? Trends in Plant Science, 22(2), 106-116. https://doi.org/10.1016/j.tplants.2016.11.002
Peñaloza, A. P. S., & Eira, M. T. S. (1993). Hydration-dehydration treatments on tomato seeds (Lycopersicon esculentum Mill). Seed Science and Technology, 21, 309-316.
Rehman, A., & Farooq, M. (2016). Zinc seed coating improves the growth, grain yield, and grain biofortification of bread wheat. Acta Physiologiae Plantarum, 38(10), 238. https://doi.org/10.1007/s11738-016-2250-3
Rehman, A., Farooq, M., Naveed, M., Öztürk, L., & Nawaz, A. (2018a). Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop and Pasture Science, 69(7), 659-672. https://doi.org/10.1071/CP17441
Rehman, A., Farooq, M., Öztürk, L., Asif, M., & Siddique, K. H. M. (2018b). Zinc nutrition in wheat-based cropping systems. Plant and Soil, 422(1-2), 283-315. https://doi.org/10.1007/s11104-017-3507-3
Roberts, W. O. (1948). Prevention of mineral deficiency by soaking seed in nutrient solution. Journal of Agricultural Science, 38, 458-468. https://doi.org/10.1017/S0021859600006250
Salcedo, M. F., Colman, S. L., Mansilla, A. Y., Martínez, M. A., Fiol, D. F., Álvarez, V. A., & Casalongue, C. A. (2020). Amelioration of tomato plants cultivated in organic-matter impoverished soil by supplementation with Undaria pinnatifidaAlgal Research, 46, 101785. https://doi.org/10.1016/j.algal.2019.101785
Samavat, S., & Malakuti, M. (2005). The necessity of using organic acid (humic and folic) to increase the quality and quantity of agricultural products. Technical publication, Tehran the Senate, 463 p. [In Persian]
Scott, D. (1998). Effects of seed coating on establishment. New Zealand Journal of Agricultural Research, 18, 59-67.
Soltani, A., Galeshi, S., Zenali, E., & Latif, N. (2001). Germination seed reserve utilization and growth of chickpea as affected by salinity and seed size. Seed Science and Technology, 30, 51-60.
Terzi, A., Çoban, S., Yıldız, F., Ateş, M., Bitiren, M., Taşkın, A., & Aksoy, N. (2010). Protective effects of black cumin (Nigella sativa L.) on intestinal ischemia-reperfusion injury in rats. Journal of Investigative Surgery, 23(1), 21-27. https://doi.org/10.3109/08941930903469375
Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2010). Humic substances biological activity at the plant-soil interface. Plant Signaling & Behavior, 5(6), 635-643. https://doi.org/10.4161/psb.5.6.11211
Tsonev, T. D., Lazova, G. N., Stoinova, Z. G., & Popova, L. P. (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. Plant Growth Regulation, 17, 153-159. https://doi.org/10.1007/PL00007029
Ullah, A., Farooq, M., Nadeem, F., Rehman, A., Nawaz, A., Naveed, M., Wakeel, A., & Hussain, M. (2020). Zinc seed treatments improve productivity, quality, and grain biofortification of desi and kabuli chickpea (Cicer arietinum). Crop and Pasture Science, 71(7), 668-678. https://doi.org/10.1071/CP19266
Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indira-Arulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2017). Enhanced plant growth-promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118-127. https://doi.org/10.1016/j.plaphy.2016.09.004
Ward, F. H., & Powell, A. A. (1983). Evidence for repair processes in onion seeds during storage at high seed moisture contents. Journal of Experimental Botany, 34, 277-282. https://doi.org/10.1093/jxb/34.3.277
Weitbrecht, K., Müller, K., & Leubner-Metzger, G. (2011). The first off, the mark: Early seed germination. Journal of Experimental Botany, 62(10), 3289-3309. https://doi.org/10.1093/jxb/err030
Yadegari, M. (2013). Foliar application of Fe, Cu, Mn, and B on growth, yield, and essential oil yield of marigold (Calendula officinalis). Journal of Applied Science and Agriculture, 8(5), 559-567.
Ya-jing, G., Jin, H., Xian-ju, W., & Chen-xia, S. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University, 10(6), 427-433. https://doi.org/10.1631/jzus.B0820373
Zare, A. R., Solouki, M., Omidi, M., Irvani, N., Oladzad Abasabadi, A., & Mahdi Nezad, N. (2011). Effect of various treatments on seed germination and dormancy breaking in Ferula assa-foetida L., a threatened medicinal herb. Journal of Sciences, 9, 57-61. https://www.researchgate.net/publication/261098818
Zulfiqar, U., Hussain, S., Ishfaq, M., Matloob, A., Ali, N., Ahmad, M., Alyemeni, M. A., & Ahmad, P. (2020). Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy, 10(10), 1566. https://doi.org/10.3390/agronomy10101566