Document Type : Original Article

Authors

1 Department of Biology, Faculty of Sciences , Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of Physics, Faculty of Sciences , Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Effects of dielectric barrier discharge (DBD) Helium plasma treatments on guar (Cyamopsis tetragonoloba) seed germination and seedling growth were studied. Seeds were pretreated with 0, 1/44 and 0/68 W of cold plasma for 60 s. Salt stress experiment included three salinity levels of NaCl (0, 50 and 100 mM). Results showed that plasma treatments had positive effects on seed germination and seedling (shoot length, root length, dry and fresh weight of shoot and root) , The treatment of 1.44 W of cold plasma had the most stimulating effect on the percentage of germination and growth of guar seedlings. Additionally, the application of Helium plasma treatments, considerably enhanced chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, and potassium(k) content in the leaves of guar plant. Thus, cold plasma treatment can be used an ameliorative way to the enhancement germination and improve seedling growth of guar against damage caused by salt stress.
Key words: dielectric barrier discharge, seed germination, guar, cold plasma, salt stress

Keywords

Acharya, B. R., Sandhu, D., Dueñas, C., Ferreira, J. F., & Grover, K. K. (2022). Deciphering molecular mechanisms involved in salinity tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using transcriptome analyses. Plants11(3), 291. https://doi.org/10.3390/plants11030291 
Adhikari, B., Adhikari, M., & Park, G. (2020). The effects of plasma on plant growth, development, and sustainability. Applied Sciences10(17), 6045. https://doi.org/10.3390/app10176045
Attri, P., Ishikawa, K., Okumura, T., Koga, K., & Shiratani, M. (2020). Plasma agriculture from laboratory to farm: A review. Processes8(8), 1002. https://doi.org/10.3390/pr8081002
Burin, M. J., Simmons, G. G., Ceja, H. G., Zweben, S. J., Nagy, A., & Brunkhorst, C. (2015). On filament structure and propagation within a commercial plasma globe. Physics of Plasmas22(5). https://doi.org/10.1063/1.4919939
Brandenburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology26(5), 053001. https://doi.org/10.1088/1361-6595/aa6426
Bafoil, M., Le Ru, A., Merbahi, N., Eichwald, O., Dunand, C., & Yousfi, M. (2019). New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. Scientific reports9(1), 8649. https://doi.org/10.1038/s41598-019-44927-4
Billah, M., Sajib, S. A., Roy, N. C., Rashid, M. M., Reza, M. A., Hasan, M. M., & Talukder, M. R. (2020). Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo l.) seed germination and growth. Archives of biochemistry and biophysics681, 108253. https://doi.org/10.1016/j.abb.2020.108253
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal90(5), 856-867. https://doi.org/10.1111/tpj.13299
Cui, D., Yin, Y., Wang, J., Wang, Z., Ding, H., Ma, R., & Jiao, Z. (2019). Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in Arabidopsis. Frontiers in Plant Science10, 1322. https://doi.org/10.3389/fpls.2019.01322
Da Silva, A. R. M., Farias, M. L., Da Silva, D. L. S., Vitoriano, J. O., De Sousa, R. C., & Alves-Junior, C. (2017). Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa Caesalpiniafolia. Colloids and Surfaces B: Biointerfaces157, 280-285. https://doi.org/10.1016/j.colsurfb.2017.05.063
Dhayal, M., Lee, S. Y., & Park, S. U. (2006). Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum80(5), 499-506. https://doi.org/10.1016/j.vacuum.2005.06.008
Dobrin, D., Magureanu, M., Mandache, N. B., & Ionita, M. D. (2015). The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies29, 255-260. https://doi.org/10.1016/j.ifset.2015.02.006
El Shaer, M., Abdel-azim, M., El-welily, H., Hussein, Y., Abdelghani, A., Zaki, A., & Mobasher, M. (2023). Effects of DBD direct air plasma and gliding arc indirect plasma activated mist on germination, and physiological parameters of rice seed. Plasma Chemistry and Plasma Processing43(5), 1169-1193. https://doi.org/10.1007/s11090-023-10350-x
Ebrahimibasabi, E., Ebrahimi, A., Momeni, M., & Amerian, M. (2020). Elevated expression of diosgenin-related genes and stimulation of the defense system in Trigonella foenum-graecum (fenugreek) by cold plasma treatment. Scientia Horticulturae271, 109494. https://doi.org/10.1016/j.scienta.2020.109494
Filatova, I., Lyushkevich, V., Goncharik, S., Zhukovsky, A., Krupenko, N., & Kalatskaja, J. (2020). The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. Journal of Physics D: Applied Physics53(24), 244001. https://doi.org/10.1088/1361-6463/ab7960
Gao, X., Zhang, A., Héroux, P., Sand, W., Sun, Z., Zhan, J., ... & Liu, Y. (2019). Effect of dielectric barrier discharge cold plasma on pea seed growth. Journal of agricultural and food chemistry67(39), 10813-10822. https://doi.org/10.1021/acs.jafc.9b03099
Gómez-Ramírez, A., López-Santos, C., Cantos, M., García, J. L., Molina, R., Cotrino, J., ... & González-Elipe, A. R. (2017). Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Scientific reports7(1), 5924. https://doi.org/10.1038/s41598-017-06164-5
Hartemink, R., Schoustra, S. E., & Rombouts, F. M. (1999). Degradation of guar gum by intestinal bacteria. Bioscience and microflora18(1), 17-25. https://doi.org/10.12938/bifidus1996.18.17
Henselová, M., Slováková, Ľ., Martinka, M., & Zahoranová, A. (2012). Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia67, 490-497. https://doi.org/10.2478/s11756-012-0046-5
International Seed Testing Association. (1999). International rules for seed testing. Seed Science and Technology, 27(Supplement).
Ji, S. H., Choi, K. H., Pengkit, A., Im, J. S., Kim, J. S., Kim, Y. H., Park, Y., Hong, E. J., Jung, S., Choi, E. H., & Park, G. (2016). Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Archives of Biochemistry and Biophysics605, 117-128. https://doi.org/10.1016/j.abb.2016.02.028
Jiang, J., Jiangang, L. I., & Yuanhua, D. O. N. G. (2018). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Science and Technology20(4), 044007. https://doi.org/10.1088/2058-6272/aaa0bf
Khamsen, N., Onwimol, D., Teerakawanich, N., Dechanupaprittha, S., Kanokbannakorn, W., Hongesombut, K., & Srisonphan, S. (2016). Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS applied materials & interfaces8(30), 19268-19275. https://doi.org/10.1021/acsami.6b04555
Li, Y., Wang, T., Meng, Y., Qu, G., Sun, Q., Liang, D., & Hu, S. (2017). Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chemistry and Plasma Processing37, 1621-1634. https://doi.org/10.1007/s11090-017-9835-5
Lu, X., Naidis, G. V., Laroussi, M., Reuter, S., Graves, D. B., & Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports630, 1-84. https://doi.org/10.1016/j.physrep.2016.03.003
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press.
Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S., & Yuanhua, D. (2014). Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports, 4(1), 5859. https://doi.org/10.1038/srep05859
Meng, Y., Qu, G., Wang, T., Sun, Q., Liang, D., & Hu, S. (2017). Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chemistry and Plasma Processing, 37, 1105-1119. https://doi.org/10.1007/s11090-017-9799-5
Mihai, A. L., Dobrin, D., Magureanu, M., & Popa, M. E. (2014). Positive effect of non-thermal plasma treatment on radish seeds. Romanian Reports in Physics, 66(4), 1110-1117.
Muller, K., Linkies, A., Vreeburg, R. A., Fry, S. C., Krieger-Liszkay, A., & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology, 150(4), 1855-1865. https://doi.org/10.1104/pp.109.139204
Mildažienė, V., Aleknavičiūtė, V., Žūkienė, R., Paužaitė, G., Naučienė, Z., Filatova, I., ... & Baniulis, D. (2019). Treatment of common sunflower (Helianthus annuus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development, and leaf protein expression. Scientific Reports, 9(1), 6437. https://doi.org/10.1038/s41598-019-42893-5
Nishime, T. M., Wannicke, N., Horn, S., Weltmann, K. D., & Brust, H. (2020). A coaxial dielectric barrier discharge reactor for treatment of winter wheat seeds. Applied Sciences, 10(20), 7133. https://doi.org/10.3390/app10207133
Perea-Brenes, A., García, J. L., Cantos, M., Cotrino, J., González-Elipe, A. R., Gómez-Ramírez, A., & López-Santos, C. (2023). Germination and first stages of growth in drought, salinity, and cold stress conditions of plasma-treated barley seeds. ACS Agricultural Science & Technology, 3(9), 760-770. https://doi.org/10.1021/acsagscitech.3c00121
Randeniya, L. K., & de Groot, G. J. (2015). Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination, and other benefits: A review. Plasma Processes and Polymers, 12(7), 608-623. https://doi.org/10.1002/ppap.201500042
Roy, N. C., Hasan, M. M., Talukder, M. R., Hossain, M. D., & Chowdhury, A. N. (2018). Prospective applications of low-frequency glow discharge plasmas on enhanced germination, growth, and yield of wheat. Plasma Chemistry and Plasma Processing, 38, 13-28. https://doi.org/10.1007/s11090-017-9855-1
Sharma, G., Sharma, S., Kumar, A., Ala'a, H., Naushad, M., Ghfar, A. A., ... & Stadler, F. J. (2018). Guar gum and its composites as potential materials for diverse applications: A review. Carbohydrate Polymers, 199, 534-545. https://doi.org/10.1016/j.carbpol.2018.07.053
Suthar, J. D., Rajpar, I., Ganjegunte, G. K., Shah, Z. U. H., Niu, G., & Grover, K. (2019). Germination, growth, and ion uptake of 15 guar accessions under elevated salinity. Agrosystems, Geosciences & Environment, 2(1), 1-9. https://doi.org/10.2134/age2019.03.0020
Stolárik, T., Henselová, M., Martinka, M., Novák, O., Zahoranová, A., & Černák, M. (2015). Effect of low-temperature plasma on the structure of seeds, growth, and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chemistry and Plasma Processing, 35, 659-676. https://doi.org/10.1007/s11090-015-9627-8
Sadhu, S., Thirumdas, R., Deshmukh, R. R., & Annapure, U. S. (2017). Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiata). LWT, 78, 97-104. https://doi.org/10.1016/j.lwt.2016.12.026
Shiratani, M., Sarinont, T., Amano, T., Hayashi, N., & Koga, K. (2016). Plant growth response to atmospheric air plasma treatments of seeds of five plant species. MRS Advances, 1(18), 1265-1269. https://doi.org/10.1557/adv.2016.37
Sarinont, T., Amano, T., Attri, P., Koga, K., Hayashi, N., & Shiratani, M. (2016). Effects of plasma irradiation using various feeding gases on the growth of Raphanus sativus L. Archives of Biochemistry and Biophysics, 605, 129-140. https://doi.org/10.1016/j.abb.2016.03.024
Švubová, R., Kyzek, S., Medvecká, V., Slováková, Ľ., Gálová, E., & Zahoranová, A. (2020). Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chemistry and Plasma Processing, 40, 1221-1240. https://doi.org/10.1007/s11090-020-10089-9
Šerá, B., Gajdová, I., Černák, M., Gavril, B., Hnatiuc, E., Kováčik, D., ... & Špatenka, P. (2012, May). How various plasma sources may affect seed germination and growth. In 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (pp. 1365-1370). IEEE. https://doi.org/10.1109/OPTIM.2012.6231880
Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104-5109. https://doi.org/10.1016/j.biortech.2007.09.076
Sera, B., Špatenka, P., Šerý, M., Vrchotova, N., & Hruškova, I. (2010). Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10), 2963-2968. https://doi.org/10.1109/TPS.2010.2060728
Tounekti, T., Mujahid, Z. U. I., & Khemira, H. (2018, June). Non-thermal dielectric barrier discharge (DBD) plasma affects germination of coffee and grape seeds. In AIP Conference Proceedings (Vol. 1976, No. 1). AIP Publishing. https://doi.org/10.1063/1.5042396
Ungar, I. A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany, 83(5), 604-607. https://doi.org/10.1002/j.1537-2197.1996.tb12745.x
Volkov, A. G., Hairston, J. S., Patel, D., Gott, R. P., & Xu, K. G. (2019). Cold plasma poration and corrugation of pumpkin seed coats. Bioelectrochemistry, 128, 175-185. https://doi.org/10.1016/j.bioelechem.2019.04.012
Zhang, J. J., Jo, J. O., Huynh, D. L., Mongre, R. K., Ghosh, M., Singh, A. K., ... & Jeong, D. K. (2017). Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Scientific Reports, 7(1), 41917. https://doi.org/10.1038/srep41917