Document Type : Original Article

Authors

Abstract

In order to investigate the effects of free living nitrogen fixing bacteria application and time of nitrogen spraying on contribution of stem reserves in grain yield, rate and effective grain filling period of Triticale, a factorial experiment was conducted based on a randomized complete block design with three replications in Research farm of the Faculty of Agriculture, University of Mohaghegh Ardabili in 2012. Treatments consisted of different nitrogen spraying times in four levels (no spraying as control, spraying in boot stage, ear emergence, grain filling period) and seed inoculation with plant growth promoting rhizobacteria in four levels containing (without inoculation as control, seed inoculation with Azotobacter chroococcum strain 5, Azospirillum lipoferum strain OF, Psedomunas putida strain 9). Results indicated that spraying time of nitrogen fertilizer and seed inoculation with free living nitrogen fixing bacteria had significant effects on yield, yield components, rate and effective grain filling period of Triticale. Maximum of grain weight (0/054 gr) and effective grain filling period (34.17 days) were obtained in seed inoculation with Azotobacter× nitrogen spraying in boot stage. Maximum of contribution of stem reserves in grain yield (30.63 %) was obtained in no nitrogen spraying × no seed inoculation with PGPR and minimum of  it (8.12 and 8.13 %) were obtained in nitrogen spraying in boot stage × seed inoculation with Azotobacter and spraying in ear emergence × seed inoculation with Azotobacter. It seems that in order to increase the grain yield,rate and effective grain filling period of Triticale, it can be suggested that nitrogen spraying is applied in boot stage and seed inoculation with Azotobacter

Keywords

Barnett, K.H., and P.B. Pearce.1983. Source-Sink ratio alteration and its effect on physiological  parameters in maize. Crop Sci. 23: 294-299.
Cakmakci, R.I., M.F. Donmez., and U. Erdogan. 2007. The effect of plant growth promoting rhizobacteria on barely seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish  J  of  Agric. 31: 189-199.
Cho, D.S., S.K. Jong., and Y.K. Park. 1987. Studies on the duration and rate of drain filling in rice (Oryza sativa L.). I. Varietal difference and effects of nitrogen. Korean J of  Crop Sci. 23: 103-111.
Dart, P.J., and  J.M. Day. 1975. Nitrogen fixation in the field other than by nodules. In: N. Walker (Ed), Soil Microbiol. Butter Worth  Sci. Publication, London. pp: 112-119.                                                          
Dobereiner, J., J.M. Day., and P.J. Dart. 1972. Nitrogenase activity and oxygen sensivity of the Paspalum notatum-Azotobacter paspali association. J. of General Microbiol. 71: 103-116.                                          
Ehdaie, B., and J.G. Wanies. 1996. Genetic variation for contribution of preanthesis assimilates to grain yield in spring wheat. J.  of  Genet. and Breed. 50: 47-56.
Ellis, R.H., and C. Pieta-Filho. 1992. The development of seed quality in spring and winter cultivars of barely and wheat. Seed  Sci. 2: 19-25.
Feiziasl,V., and GH.R.Valizadeh. 2004. Effect of urea liquid fertilizer spraying at different plant growth stages on grain quality and quantity in Sardari dryland wheat (T. aestivum. L.). Iranian J. of Agric. Sci. 35:2 (In Persian, with English Abstract)
Garangac, A.G.,  and S. Galeshi. 2000. Effects of foliar application of urea on yield and yield components of two cultivars wheat (Triticum aestivum L.). Agric. Sci. and Nat. Res. 8 (2): 87-97. (In Persian, with English Abstract)
Gooding, M.I., and W.P. Davies. 1992. Foliar urea fertilization of cereals. Fert. Res. 32: 202-222.
Hamdi,Y.A. 2002. Application of nitrogen fixing systems in soil improvement and management. FAO Soil Bull, Rome, 188p.                                                                                                                           
 Jagnow, G. 1987. Inoculation of cereal crops and forage grasses with nitrogen-fixing rhizosphere bacteria: possible causes of success and failure with regard to yield response-a review. Agron.  J. 15: 361-368.
James, E.H. and G.M. Paulsen. 2004. Nitrogen assimilation and protein synthesis in wheat seedlings as affected by mineral  nutrition. Plant  Physiol. 44(5): 636-640.
Kandil, A.A., M.A. Badawi, S.A. EL-Moursy. and M.A. Abdou. 2004. Effect of planting dates, nitrogen levels and bio- fertilization treatments on 1: Growth attributes of sugar beet (Beta Vulgaris L.). Basic Appl Sci. 5(2): 227-237.                                                                                                                    
Kaya,Y.K., R.Z. Arisoy., and A. Gocmen. 2002. Variation in grain yield and quality traits of bread wheat genotypes by zinc fertilization. Pakistan  J. of  Bot. 1(4): 142-144.
Kennedy, I.R., A.T. Choudhury., and M.L. Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil  Biol. and  Biochem.36:1229-1244.                                                                                                                               
KhoshGoftar Manesh, A. 2008. Princple of Plant Nutrition. University of Esfahan Press. (In Persian).
Kloepper, J.W., and C.J. Beauchamp.1992.A review of issues related to measuring of plant roots by bacteria. Can.  J. of  Microbiol. 38: 1219-1232.
Manske, G.B., A. Luttger., R.K. Behi., P.G. Vlek. and M. Cimmit. 2000. Enhancement of mycorhiza (VAM) infection, nutrient efficiency and plant growth by Azotobacterchroococcum in wheat. Plant  Breed. 13: 78-83.
Masoni, A., L. Ercoli., M. Mariotti., and I. Arduini. 2007. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in drum wheat as affected by soil type. Eur  J  of Agron. 26: 179-186.
Mishra. M., A.K. Patjoshi., and D. Jena. 1998. Effect of biofertilization on production of maize (Zea mays). Indian  J of Agron 43: 307–310.
Murchie, E.H., J. Yang., S. Hubbart., P. Horton., and S. Peng. 2002. Are there associations between grain-filling rate and photosynthesis in the flag leaves of field grown rice? J. of  Eur.  Sci. 53: 2217-2224.
Ntanos, D.A., and S.D. Koutroubas. 2002.Dry matter and N accumulation and  translocation for India and Japonica rice under Mediterranean conditions. Field Crops Res.74: 93-101.
Papakosta, D.K., and A.A. Gagianas. 1991.Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J. 83: 864-870.
Peltonen, J. 1993. Interaction of late season foliar spray of urea and fungicide mixture in wheat production. J of  Agron and  Crop Sci. 170: 296-308.                                                                                            
Rao, S.C., and T.H. Dao.1992. Fertilizer placement and tillage effects of nitrogen assimilation by wheat. Agron.  J. 84:1028- 1032. 
Ronanini, D., R. Savin.,and AJ. Hall.2004. Dynamic of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief interval of high temperature during grain filling. Field  Crop Res.  83: 79-90.
Rudresha, D.L., M.K. Shivaprakasha., and R.D. Prasad.2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl. Soil and Ecol. 28:139–146.
Salwau, M.I.M. 1994. Effect of soil and  foliar application of nitrogen levels on yield and yield components of wheat (T. aestivum L.).Annals Agric Sci: 32: 705-715.                                
Saradan, S.J., and M.C. Gianibelli.1990. Effect of foliar urea spraying and nitrogen application at sowing upon dry matter and nitrogen distribution in wheat (Triticum aestivum L.). Agron.  J. 10: 183-189.         
Seyed Sharifi1, R., and H. Nazarly. 2012. Effects of seed priming with Plant Growth Promoting Rhizobacteria (PGPR) on grain yield, fertilizer use efficiency and dry matter remobilization of sunflower (Helianthus annus L.) with various levels of nitrogen fertilizer. J. of  Sustain Agric. 3:27-45.
Sharaan, A.N., and F.S. El-Samie.1999.Response of wheat varietiers to some environmental influences.1. Effect of seeding rates and N fertilization levels on growth and yield of two wheat varieties (Triticum aestivum L.). Am. Agric. Sci. 44: 589-601.
Singh, R., R.K. Behl., K.P. Singh., P. Jain., and N. Narula.2004.Performance and gene effects for wheat yield under inoculation of arbuscular mycorrhiza fungi and Azotobacter chroococcum. Haryana Agricultural University. Hisar, Plant Soil Environ. 50(9): 409-415.                                                                    
Souza, S.R., E. Mariam., L.M. Stark. and M.S. Fernandes. 1998. Nitrogen remobilization during the reproductive period in two Brazilian rice varieties. J of Plant Nut. 21: 2049-2053.
Syverud, T.D, L.M. Walsh, E.S. Oplinger.,  and  K.A. Kelling 1980. Foliar  fertilization of soybean (Glycine max L.). Commun.  Soil Sci and  Plant Nut. 11:637-651
Togay, N. and Togay.2008.Effect of Rhizobium inoculation, sulfur and phosphorus application on yield, yield components and nutrient uptake in chick pea (Cicer  aretinum L.). African  J of  Biotech. 7:6. 776-782.
Tosi Kohal,P., M. Esfahani., B. Rabei., and M. Rabei.2012.Effect of Concentration and Time of Supplementary Nitrogen Fertilizer Application on Yield and NUE of Rapeseed (Brassica napus L.) as a Second Crop in Paddy Field. 42(2):387-396. (In Persian, with English Abstract)
Tsuno, Y., T. Yamaguchi., and J. Nakano.1994. Potential dry matter production and grain filling process of rice plant from the viewpoint of source-sink relationships and the role of root respiration in its relationship. Agron.  J.  47: 1-10.
Yamaguchi, T., Y. Tsuno., J. Nakano., and K. Miki. 1995. Influence of nitrogen content on grain weight at the early ripening stage and relationship between root respiration and leaf area per spikelet of rice plants. Agron  J. 33:251-258
Zabihi, H.R., G.R. Savaghebi, K. Khavazi., and A. Ganjali. 2008. Response of wheat growth and yield to application of plant growth promoting rhizobacteria at various levels of phosphorus fertilization. Iranian J. of Field Crops. 7(1): 41-51. (In Persian, with English Abstract)