Prediction of cardinal temperature by nonlinear regression models in carrot (Daucus carota L.) and three common weed species

Document Type : Original Article

Abstract

Carrot is a particularly difficult crop to manage in terms of weed control. For weed management of carrot, seed germination is a key process because it determines both the number of weeds that could potentially emerge and the timing of their appearance in the carrot. This study was done to evaluate two nonlinear regression models (Intersected-lines and Dent-like) to describe response of germination rate to temperature in carrot (Daucus carota L.), common chickweed (Stellaria media (L.) Vill.), yellow foxtail (Setaria glauca (L.) P. Beauv.) and canada fleabane (Conyza canadensis (L.) Cronq.). This experiment was based on completely randomized design with 4 replications at Islamic Azad University, Science Research Branch, in 2015. The seeds were treated with different temperatures (2, 5, 10, 15, 20, 25, 30, 35, 40 and 45oC). The analysis of variance showed that temperature had a significant effect on all seed germination percentage and germination rates. Intersected-lines model was superior in carrot and Dent-like model was superior for common chickweed, yellow foxtail and canada fleabane. Base, optimum and maximum temperatures were predicted with appropriate model. Base, optimum and maximum temperatures were for carrot 1.67, 22.84, 43.16; common chickweed 3.58, 18.82-19.67, 42.75; yellow foxtail 14.17, 33.75-34.92, 44.86 and canada fleabane 13.74, 31.73-31.94, 44.21ºC, respectively. This results showed that carrot germinated earliest among the studied species, because it had the lowest base temperature, so sooner planting it was caused sooner carrot establishment and less weed competition.

Keywords


 
Ajam Norouzi, H., A.Soltani., E. Majidi and M. Homaei. 2007. Modeling response of emergence to temperature in faba bean under field condition. Journal of Agricultural Sciences and Natural Resources. 14: 100-111.
Akram-Ghaderi, F. 2008. The study of seed quality development, germination, longevity and deterioration in some medicinal plants: medicinal pumpkin (Cucurbita pepo. Convar.var. styriaca), cumin blank (Nigella sativa L.) and borago (Borago officinalis L.). Ph.D. Thesis, Univer of Gorgan. Agric. Sci. Natur. Resour. 180p. (in Farsi)
Balbaki, R. Z., R.A. Zurayk., M.M. Blelk and S.N. Tahouk. 1999. Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Sci. Techno. 27: 291-302.
Bannayan, M., F. Nadjafi., M. Rastgoo and L. Tabrizi. 2006. Germination properties of some wild medicinal plants from Iran. J. Seed Technol. 28: 80-86.
Bellinder, R.R., J.J. Kirkwyland and R.W. Wallace. 1997. Carrot (Daucus carota) and weed response to linuron and metribuzin applied at different crop stages. Weed Techno. 11: 235–240.
Bell, C. E., B.E. Boutwell., E.J. Ogbuchiekwe  and M.E.Jr. Mcgiffen, 2000: Weed con­trol in carrots: the efficacy and economic value of linuron. Hort Sci.35: 1089–1091.
Garcia-huidobro, J., Monteith, J. L. and Squaire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum thyphoides S. and H.) I. Constant temperature. J. Experi. Bot. 33: 288–296.
Hardegree, S., 2006. Predicting germination response to temperature. I. Cardinal temperature models and subpopulationspecific regression. Annals of Bot. 97: 1115- 1125.
Hoseini M., M. Mojab and Gh. Zamani. 2012. Evaluation wild barley (Hordeum spontaneum Koch.) barley grass (H.murinum L.) and hoary cress (Cardaria draba L.) germination in different temperatures. In proceeding 4th Iranian Weed Science Congress, 6-7 February, 2004. Ahvaz, Iran. p p: 108.
Jame, Y. W and H.W. Cutforth, 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124: 207-218.
Jeffrey, D.W., C.M. Timothym and T.R. John. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. J. Chem. Eco. 13: 1424–1426.
Kamkar, B., M. Ahmadi., A. Soltani  and E. Zeinali. 2008. Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Sci. Technol. 2: 53-57.
Kamkar, B., M. Jami Al-Ahmadi and A. Mahdavi-Damghani. 2011. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds germinate using non-linear regression models. Indian Crop Prod. 35: 192-198.
Kazeruni monfared, A., P. Rezvani Moghadam., M. Nasiri Mahalati and Tokasi, S., 2012. Investigation on the cardinal temperatures for germination of Solanum nigrum. In proceeding of 4th Iranian Weed Science Congress, 6-7 February. 2004, Ahvaz, Iran. pp: 122.
Kocabas, Z., J. Craigon and S.N. Azam Ali. 1999. The germination response of bambara groundnut (Vigna sublerrannean(L)Verdo) to temperature. Seed Sci. Technol. 27: 87-99.
Litterick, A. 1999. Weed Strategies. Grower, April 1 1999. 131 (13), pp 20.
Peacock, L. 1991. Effect on weed growth of short-term cover over organically grown carrots. Bio.Agri. Horticul.7: 271-279.
Mabey, R. 1997. Flora Britannica. London: Chatto and Windus. ISBN: 1856193772.
Rose, F. and O’Reilly, C. 2006. The wild flower key. London: Fredick Warne. ISBN 0723251754.
Maguire J.D. 1962. Speed  of  germination-aid in  selection and evaluation for  seedling emergence and vigor. Crop Science, 2: 176-177.
Martin, S.G, R.C. Van Acker and L.F. Friesen. 2001. Critical period of weed control in spring canola. Weed Sci.49:326–333.
McCormick, J.I., R.A. Goodger and R.JChynoweth,  2014.Cardinal temperatures and vernalisation requirements for a selection of vegetables for seed production. Agro. New Zealand . 44: 71-83.
 Nandula, V. K.,  Eubank T. W.,  Poston D. H.,  Koger, C. H., and Krishna N. Reddy. 2006.  Factors affecting germination of horseweed (Conyza canadensis). Weed Sci. 54: 898-902.
Nerson, H., 2007. Seed production and germinability of cucurbit crops. Seed Sci. Biotech. 1: 1-10.
Page, E.R., R.S. Gallagher., A.R. Kemanian., H. Zhang and E.P. Fuerst. 2006. Modeling site-specific wild oat (Avena fatua) emergence across a variable landscape. Weed Sci. 54: 838-846.
Phartyal, S.S., R.C. Thapial., J.S., Nayal., M.M.S. Rawat and G. Joshi. 2003. The influence of temperatures on seed germination rate in Himalaya elm (Ulmus wallichiana). Seed Sci. Technol. 25: 419-426.
Shafii, B and W.J. Price. 2001. Estimation of cardinal temperatures in germination data analysis. J. Agri. Bio. Envi. Stat. 6: 356-366.
Soltani, A., M.J. Robertson., B. Torabi., M. Yousefi-Daz and R. Sarparast. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agri. Forest Mete. 138: 156-167.
Stall, W.M and J.A. Dusky. 2000: Weed control in carrots and parsley. www.edis.ifas.ufledu.
Steinmaus, S.J., T.S. Prather and J.S. Holt, 2000. Estimation of base temperature for nine weeds species. J. Experimental Bot. 51: 275-286.
Sulaeman, A., L. Keeler., S.L. Taylor., D.W. Giraud and J.A. Driskell. 2001. Carotenoid content, physicochemical and sensory qualities of deep-fried carrot chips as affected by dehydration/rehydration, antioxidant and fermentation. J. Agri. Food Chem. 49: 3253–3261.
Summerfield, R. J., R.H. Roberts., R.M. Ellis and R. J. Lawan. 1991. Towards the reliable prediction of time to flowering in six annual crops. I. the development of simple model for fluctuating field environment. Experimental Agri. 27: 11-31.
Tabrizi, L., M. Nasiri Mahallati and A. Koocheki. 2004. Investigation on the cardinal temperature for germination on Plantago ovata and Plantago psyllium. J. Iranian Field Crops Res. 2: 143-150.
Teofilo, T.M., F.C. Freitas., M.Z. Negreiros., W.A.R. Lopes and S.S. Vieira. 2009: Growth of carrot cultivars conditions Mossoró-RN. Revista Caatinga. 22: 168-174.
Thygerson, T., J.M. Harris., B.N. Smith., L.D. Hansen., R.L. Pendleton and D.T. Booth. 2002. Metabolic response to temperature for six populations of winter fat (Eurotia lanata). Thermochimica Acta. 394: 211-217.
Van Heemst, H.D.J., 1985: The influence of weed competition on crop yield. Agricultural System, 18: 81–93.
Vieira, J. V., H.B.S.V.  Pessoa and N. Makishima. 1997: Cultivo da cenoura (Daucus caro­ta L.). Brasίlia: Embrapa Hortaliças, 13, 20 p.
Yousefi-Daz, M., A. Soltani., F. ghaderi-far and R. Sarparast., 2006. Evaluation of non-linear regression models to describe response of emergence rate to temperature in chickpea. Agri. Sci. Technol. 20: 93-102.
Zeinali, E., Soltani, A., Galeshi, S., and Sadati, S. J. 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. J. Plant Prod. 3(3): 23-42.