Using of thermal time, hydrotime and hydrothermal time on modeling germination Mancan variety of buckwheat (Fagopyrum esculentum Moench.)

Document Type : Original Article

Authors

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Nature Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 University of Mohaghegh Ardabili

Abstract

In order to study the effect of different levels of drought stress and temperature on seed germination of buckwheat, a factorial experiment was conducted as completely randomized design with three replications. Experimental treatments were included different levels of drought stress (0, -0.2, -0.4, -0.6 and -0.8 MPa) and different temperatures (8, 12, 16, 20, 25, 30, 35 and 40 oC). Results indicated that all models of thermal time, hydro time, and hydrothermal time could predict the germination of buckwheat in temperature and osmotic potential. Basic temperature (Tb) was estimated from -0.98 to 11 oC, optimum temperature (To) from 21.7 to 24.7 oC, and maximum temperature (Tc) from 30 to 41.5 oC, which osmotic potential increased Tb and decrease To and Tc in Buckwheat. Also, increasing temperature enhanced germination rate (decrease θHT from 18 MPa day at 8 oC to 3 MPa day at 35 oC), and decreased stress tolerance due to increasing basic potential (increase ψ50 from -0.927 MPa to 0.043 MPa). According to the hydrothermal time model output, Tb in this plant was about 1.93 oC and at 92 MPa oC day, highest germination rate was recorded and ψTb in this plant in Tb was about -1.31 MPa. Also it was defined that, each of these three models predicted buckwheat seed germination under different temperature and water potential, but hydrothermal time was a general model and we can suggested it.

Keywords


Akbari, H., A. Derakhshan, B. Kamkar, and S. S. Modares. 2015. Modeling seed germination of Ricinus communis using hydrothermal time model developed on the basis of Weibull distribution. Iranian J. Field Crops Res. 13(3): 543-552. Doi: 10.22067/gsc. v13i3.27092. (In Persian)
Anderson, D.R., and K. P. Burnham. 2002. Avoiding pitfalls when using information-theoretic methods. J. Wildlife Manage. 912-918. Doi: 10.2307/3803155.
Aubert, L., and M. Quinet. 2022. Comparison of Heat and Drought Stress Responses among Twelve Tartary Buckwheat (Fagopyrum tataricum) Varieties. Plants. 11(11):1-21.Doi:10.3390/ plants11111517.
Bakhshandeh, E., R. Ghadiryan, S. Galeshi, and E. Soltani. 2011. Modelling the effects water stress and temperature on seed germination of Soybean (Glycine max L.) and Velvetleaf (Abutilion thephrasti med.). J. Plant Prod. 18(1): 29-47.
Batlla, D., and R. L. Benech-Arnold. 2015. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Sci. Res. 25(2):147-158. Doi:10.1017/S0960258514000452
Bewley, J. D., and M. Black. 2013. Seeds: physiology of development and germination. Springer, N.Y., U.S.
Bewley, J.D., K. Bradford, and H. Hilhorst. 2013. Seeds: physiology of development, germination and dormancy. 3rd ed. Springer, New York. Doi:10.1007/978-1-4614-4693-4.
Bloomberg, M., J. R., Sedcole, E.G., Mason, and G. Buchan. 2009. Hydrothermal time germination models for Radiata pine (Pinus radiata D. Don). Seed Sci. Res. 19: 171-182. Doi:10.1017/S0960258509990031.
Bradford, K. J. and O. A. Somasco. 1994. Water relations of lettuce seed thermoinhibition. I. Priming and endosperm effects on base water potential. Seed Sci. Res. 4: 1-10. Doi: 10.1017/S0960258500001938.
Bradford, K. J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50:248-260. Doi: 10.1614/ 0043-1745(2002) 050 [0248: AOHTTQ] 2.0.CO;2.
Bradford, K.J. and D.W. Still. 2004. Applications of hydrotime analysis in seed testing. Seed Technol. 26: 74-85.
Brodford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50: 248-260. https://doi.org/10.1614/0043-1745(2002) 050[0248: AOHTTQ] 2.0.CO;2
Coolbear, P. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 35:1609-1617. Doi:10.1093/jxb/35.11.1609.
Farzaneh, S. 2014. Study of the relationships among phonological, morphological and physiological characters of sugar beet parents on seed quality and quantity. Ph.D. Dissertation, Gorgan University of Agricultural Sciences and Natural Resources, Iran. (In Persian)
Gummerson, R.J. 1986. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37: 729-741. Doi:10.1093/jxb/37.6.729.
Gurvich, D. E., R. Pérez-Sánchez, K. Bauk, E. Jurado, M. C. Ferrero, G. Funes, and J. Flores. 2017. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora. 227: 18-24. Doi: 10.1016/j. flora. 2016.12.003.
Hu, X. W., Y. Fan, C. C. Baskin, J. M. Baskin, and Y. R. Wang. 2015. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 102: 649-660. Doi:10.3732/ajb.1400507.
Ishii, S., T. Katsumura, C. Shiozuka, K. Ooyauchi, K. Kawasaki, S. Takigawa, T. Fukushima, Y. Tokuji, M. Kinoshita, M. Ohnishi, M. Kawahara, and K. Ohba. 2008. Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci. Bioethanol. Biochem, 72: 3148-3157. Doi:10.1271/bbb.80324
Jami Al-Ahmadi, M., and M. Kafi. 2007. Cardinal temperatures for germination of Kochia scoparia (L.). J. Arid Environ. 68: 308-314. Doi: 10.1016/j.jaridenv.2006.05.006.
Kiani, S., G. Parmoon, S. A. Moosavi, and S. A. Siadat. 2020. Quantification of the seed germination of fennel ecotypes to osmotic stress using different statistical distributions. Iranian J. Seed Sci. Technol. 9(3): 99-112. Doi: 10.22034/ijsst.2019.123683.1238. (In Persian)
Larsen, S.U., C. Bailly, D. Come, and F. Corbineau. 2004. Use of the hydrothermal time model to analysis interacting effects of water and temperature on germination of three grass species. Seed Sci. Res. 14: 35-50. Doi: 10.1079/SSR2003153.
Lim, J. H., K. J. Park, B. K. Kim, J. W. Jeong, and H. J. Kim. 2012. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135:1065- 1070. Doi: 10.1016/j.foodchem.2012.05.068.
Mirsky, S. B., M. R. Ryan, J. R. Teasdale, W. S. Curran, C. S. Reberg-Horton, J. T. Spargo, and J. W. Moyer. 2013. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technol. 27(1): 193-203. Doi:10.1614/WT-D-12-00078.1
Nazari, M. A. H. T. A. B., A. R. A. S. H. Mamedi, and S. M. B. Hoseine. 2018. The evaluation response of onion (Allium cepa) seed germination to temperature by thermal-time analysis and determine cardinal temperatures by using nonlinear regression. Iranian J. Field Crop Sci. 48(4)-23-37. (In Persian)
Parmoon, G., S. A. Moosavi, and S. A. Siadat. 2018. How salinity stress influences the thermal time requirements of seed germination in Silybum marianum and Calendula officinalis. Acta Physiol. Plant. 40(9):1-13. Doi:10.1007/s11738-018-2750-4.
Patanè, C., A., Saita, and O. Sortino. 2013. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J. Agron. Crop Sci. 199(1): 30-37. Doi:10.1111/j.1439-037X.2012.00531.x.
Perry, D.A., 1991. Methodology and application of vigour tests. International Seed Testing Association, Zurich, Switzerland. 275p.
Pourreza, J., and A. Bahrani. 2012. Estimating cardinal temperatures of milk thistle (Silybum marianum) seed germination. Am. Eurasian J. Agric. Environ. Sci. 12:1485-1489. Doi:10.5829/idosi.aejaes. 2012.12.11.1839
Savaedi, Z., G. Parmoon, S. A. Moosavi, and A. Bakhshande, 2019. The role of light and Gibberellic Acid on cardinal temperatures and thermal time required for germination of Charnushka (Nigella sativa) seed. Ind. Crops Prod. 132: 140-149. Doi:10.1016/j.indcrop.2019.02.025.
Soltani, A., S. Galeshi, E. Zainali, and N. Latifi, 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.
Sytar, O. 2015. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J. King Saud Univ. Sci. 27: 136-142. Doi:10.1016/j.jksus.2014.07.001.
Tabatabaei, S. A., S. Nikoumaram, and O. Ansari. 2020. Application of hydro-time model for quantification of Brassica napus L. germination response to water potential and temperature. Environ. Stresses Crop Sci. 13(2):559-570. Doi:10.22077/escs.2019.2152.1538.
Tilki, F., and H. Dirik, 2007. Seed germination of three provenances of Pinus brutia (Ten.) as influenced by stratification, temperature and water stress. J. Environ. Biol. 28(1): 133-146. Doi: 10.1371/journal.pone. 17718000.e
Ullah, A., S. Sadaf, S. Ullah, H. Alshaya, M.K. Okla, Y.A. Alwasel, and A. Tariq. 2022. Using Halothermal Time Model to Describe Barley (Hordeum vulgare L.) Seed Germination Response to Water Potential and Temperature. Life, 12(2): 209-215. Doi: 10.3390/life12020209.
Wang, R., Y. Bai, and K. Tanino, 2005. Germination of winter fat (Eurotia lanata Moq.) seeds at reduced water potentials: testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53(1): 49-63
Watt, M. S., M. Bloomberg, and W. E. Finch-savage. 2011. Development of a hydrothermal time model that accurately characterizes how thermoinhibition regulates seed germination. Plant Cell Environ. 34: 870-876. Doi:10.1111/j.1365-3040.2011.02292.x.