Quantification of the effects of aging on cardinal temperatures of Echinops seed germination using nonlinear models (Echinops spp)

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan.

2 Department of Plant production of Genetics, Khuzestan University of Agricultural Sciences and Natural Resources.

3 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan

4 University of Mohaghegh Ardabili

Abstract

In order to determine the cardinal temperature of decayed sugarcane seeds, this study was carried out factorially in a completely randomized design with three replications in Khuzestan University of Agriculture and Natural Resources. The first factor was aging at 5 levels (0, 24, 48, 72 and 96 hours of decline) and germination temperatures at 7 levels (5, 10, 15, 20, 25, 30, 35 and 40 ° C). The results showed that the percentage and speed of germination were affected by the interaction of temperature in the decay so that their highest value was in the temperature range of 20 to 25 ° C and the decay in addition to reducing their amount increased the range of changes of this plant at different temperatures. The highest germination percentage was observed at 20 ° C in undeveloped seeds and 15 to 20 ° C at 24 and 48 h. Estimation of different non-linear models on germination rate also showed that among the evaluated models, the better toothed model was the model for germination of sugarcane seeds at different levels of decay. The germination basal temperature of sugarcane was estimated to be 1 ° C in non-degradable conditions, which increased to 1.8 ° C in 24 hours of decline and decreased again in higher degradations. The optimum germination temperature of this plant was between 20 to 32 at no aging conditions.

Keywords


Abdullaev, F.I., and J.J. Espinosa-Aguirre. 2004. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and prevention. 28(6):426-432. Doi:10.1016/j.cdp.2004.09.002.
Alavi, S.H. E. Zand, B. Delkhosh, F. Ghajar, and H. Alipour. 2014. Study on the effect of different temperatures on the seed germination of Rosinweed (Cressa cretica) in the Rafsanjan pistachio orchards. Iranian Pistachio Mag. 1(1): 49-57. (In Persian)
Alvarado V., and K.J. Bradford. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant. Cell Environ. 25:1061-1069. Doi:10.1046/j.1365-3040.2002.00894.x.
Azadbakht, M. and M. Hosseini. 2016. The need to standardize the extract of medicinal plants in research and how to do it. Razi J. Med. Sci. 23 (152): 9-17. (In Persian, with English Abstract)
Bannayan, M., F. Nadjafi., M. Rastgoo, and L. Tabrizi. 2006. Germination properties of some wild medicinal plants from Iran. J. Seed Technol. 28: 80-86. (In Persian)
Basra, S. M. A., N. Ahmad, M. M. Khan, N. Iqbal, and M. A. Cheema. 2003. Assessment of cottonseed deterioration during accelerated ageing. Seed Sci. Technol. 31: 531-540. Doi:10.15258/sst.2003.31.3.02.
Bradfoed, K.J. and D.W. Still. 2002. Applications of hydrotime analysis in seed testing. J. Seed Technol. 26: 74-85.
Bradford, K.J., 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50:248-260. Doi:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2.
Burnham K.P., and D.R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information Theoretic Approach. Springer, New York, U.S.
Chen, K., A. Fessehaie and R. Arora. 2012. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci. 183: 27–36. Doi:10.1016/j.plantsci.2011.11.002.
Demir Kaya, M., O. Gamze, M. Atak, Y. Cikili, and O. Kolsarici. 2006. Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 24: 291-295. Doi:10.1016/j.eja.2005.08.001.
Garcia-huidobro, J., J. L. Monteith, and G.R. Squaire. 1982. Time, temperature and germination of pearl millet (Pennisetum thyphoides S. and H.) I. Constant temperature. J. Exp. Bot. 33: 288–296. Doi:10.1093/jxb/33.2.288.
Hakansson, I., A. Myrbeck, and E. Ararso. 2002. A review of research on seedbed preparation for small grains in Sweden. Soil Tillage Res. 64: 23-40. Doi:10.1016/S0167-1987(01)00255-0.
Hampton, J. G., and D. M. Tekrony. 1995. Hand book of Vigor Test Methods. The International Seed Testing Asociation, Zurich. Switzerland.
Higashiyama, T. 2002. Novel functions and applications of treehouse. Int. Union Pure Appl. Chem. 74:1263-1269. Doi:10.1351/pac200274071263.
Hoseini, M., M. Mojab, and Gh. Zamani. 2012. Evaluation wild barley (Hordeum spontaneum Koch.) barley grass (H. murinum L.) and hoary cress (Cardaria draba L.) germination in different temperatures. Pp 108. In Proc. 4th Iranian Weed Sci. Congr. 6-7 Feb. 2004. Ahvaz, Iran. (In Persian)
Jalilian, J, and N, Khalili Aqdam. 2015. The effect of intermittent temperatures on germination rate of Mandab seeds (Eruca sativa) Iranian J. Seed Res. 2(1): 127-133. Doi:10.29252/yujs.2.1.127. (In Persian)
Jame, Y. W., and H.W. Cutforth. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric. For. Meteor. 124: 207-218. Doi:10.1016/j.agrformet.2004.01.012.
Jami Al-Ahmadi M., and M. Kafi. 2007. Cardinal temperatures for germination of Kochia (scoparia L). J. Arid Environ. 68:308-314. Doi:10.1016/j.jaridenv.2006.05.006.
Kamkar, B., M. Ahmadi, A. Soltani, and E. Zeinali. 2008. Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Sci. Technol. 2: 53-57. Doi 10.18805/ lr. v0i0.7301.
Kamkar, B., M.J. Al-Alahmadi, A. Mahdavi-Damghani, and F.J. Villalobos. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Ind. Crops Prod. 35(1): 192-198. Doi:10.1016/j.indcrop.2011.06.033.
Kapoor, N., A. Aria, M.A. Siddiqui, A. Amir, and H. Kumar. 2010. Seed deterioration in chickpea (Cicer arietinum L.) under accelerated ageing. Asian J. Plant Sci. 9: 158-162. Doi: 10.3923/ajps.2010.158.162.
Khairkhah, M., A., Kouchaki, P., Rezvani Moghadam, and M., Nasiri Mahallati. 2014. Determination of Cardinal Germination Temperatures of Ziziphora clinopodioides Lam. Iranian J. Field Crops Res. 11(4): 543-550. Doi: 10.22067/jhorts4.v31i4.45673. (In Persian, with English Abstract)
Kibinza, S., J. Bazin, C .H. Bailly, J.M. Farrant, F. Corbineau, and H.E. Maarouf-Bouteau. 2011. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 181: 309-315. Doi:10.1016/j.plantsci.2011.06.003.
Kibinza, S., Vinel, D., Côme, D., Bailly, C. and Corbineau, F. 2006. Sunflower seed deterioration as related to moisture content during aging, energy metabolism and active oxygen species scavenging. Physiol. Plantarum, 128(3): 496-506. Doi:10.1111/j.1399-3054.2006.00771.x.
McDonald, M.B. 1999. Seed deterioration. Physiology, repair and assessment. Seed Sci. Technol. 27: 177- 237.
Muzaffarian, V.1996. Dictionary of Iranian plant names. Farhange-Moaser, Tehran, Iran.
Mwale, S.S., S.N. Azam-Ali, J.A. Clark 1994. Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Sci. Technol. 22:565–571. Doi:10.15258/sst.2003.31.1.09.
Nerson, H. 2007. Seed production and germinability of Cucurbit crops. Seed Sci. Biotechnol. 1: 1-10.
Oskouei, B., E. Majidi Heravan, A. Hamidi, F. Moradi, and A. Moghadam. 2015. Study of accelerated aging time effect on seed different size and shapes vigor of hybrid corn (Zea mays), cv. single cross 704. Iranian J. Seed Sci. Res. 2(1): 45-53. Doi: 20.1001.1.24763780.1394.2.1.5.2. (In Persian)
Ostadian Bidgoli, R., H.R. Balouchi, E. Soltani, and A. Moradi. 2017. Effects of temperature and water potential on seed germination characteristics in Safflower (Carthamus tinctorius L.)Higashiyama, T. 2002. Novel functions and applications of trehalose. Int. Union. Pure. Appl. Chem. 74:1263-1269. Doi: 10.22034/ijsst.2017.113284.
Parmoon, G., A. Ebadi, S. Janbakhsh, and S.A. Moosav. 2015. Effects of seed priming on catalase activity and storage reservoirs of aged milk thistle seeds (Silybum marianum (L.) Gaertn). Tarı. Bili. Der. J. Agric. Sci. 21: 363-372. Doi:10.1501/Tarimbil_0000001339.
Patane, C., A. Saita, A. Tubeileh, S.L. Cosentino, and V. Cavallaro. 2016. Modeling seed germination of unprimed and primed seeds of sweet sorghum under peg-induced water stress through the hydrotime analysis. Acta Physiol. Plantarum. 38(5): 115. Doi:10.1007/s11738-016-2135-5.
Piper, E.L., K.J. Boote, J.W. Jones, and S.S. Grimm. 1996. Comparison of two phenology models for predicting lowering and maturity date of soybean. Crop Sci. 36:1606–1614. Doi:10.2135/cropsci1996.0011183X003600060033x.
Shamsi salari, V, M. Sedghi and R. Seyed Sharifi. 2014. Temperature and Drought on Seed Germination Characteristics of Salvia officinalis. 2nd Natl. Conf. Sustainable Agric. Nat. Resour. 13 Oct. 2014. Institute of Education Aali Mehr Arvand, an environmental group extension group, Tehran, Iran. (In Persian)
Siadat, S. A., S. A. Moosavi, G. Parmoon, and S. Kiani, 2021. Study the relationship between seed size and aging on cardinal temperatures of Canola. Iranian J. Seed Sci. Technol. 10(4):119-135. Doi: 10.22092/ijsst.2020.351193.1352. (In Persian)
Soltani, A., S. Galeshi, E. Zainali, and N. Latifi, 2001. Germination, seed reserve utilization and seedlinggrowth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.
Soltani, A., M.J. Robertson., B. Torabi., M. Yousefi-Daz, and R. Sarparast. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric. For. Meteor. 138: 156-167. Doi:10.1016/j.agrformet.2006.04.004.
Soltani, E., S. Galeshi, B. Kamkar, and F. Akramghaderi. 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Sci. Biotechnol. 2: 32-36. Doi: 10.3923/rjes.2009.184.192.
Sveinsdottir, H., F. Yan, Y. Zhu, T. Peiter-Volk, and S. Schubert. 2009. Seed ageing-induced inhibition of germination and post-germination root growth is related to lower activity of plasma membrane H (+)- ATPase in maize roots. J. Plant Physiol. 166 (2): 128-135. Doi:10.1016/j.jplph.2008.01.012.
Tabrizi, L., M. Nasiri Mahallati, and A. Koocheki. 2004. Investigation on the cardinal temperature for germination on Plantago ovata and Plantago psyllium. Iranian J. Field Crop Res. 2: 143-150. Doi: 10.22067/gsc.v2i2.1248.
Windauer, L., A. Altuna, and R. Benech-Arnold. 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Ind. Crops Prod. 25: 70-74. Doi: 10.1016/j.indcrop.2006.07.004.
Yan, W. and LA. Hunt. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84:607–614. Doi:10.1006/anbo.1999.0955.
Yin, X., M.J. Kropf, G. McLaren, and R.M. Visperas. 1995. A nonlinear model for crop development as a function of temperature. Argic. Meteorol. 77:1–16. Doi:10.1016/0168-1923(95)02236-Q.