The effect of seed inoculation with mycorrhizal fungi on germination and growth indicators of two papaya varieties in different culture substrates

Document Type : Original Article

Authors

Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, University of Zabol, Zabol, Iran

Abstract

This experiment was conducted to investigate the germination and seedling growth of two papaya (Carica papaya L.) varieties in response to the inoculation of mycorrhizal fungi and culture substrates in a factorial in the form of a completely randomized design. The experiment factors include varieties at 2 levels (Red Lady (V1) and Bangladeshi (V2)), culture substrate at 5 levels (compost + perlite + vermicompost (1:1:1) (S1), compost + perlite + cocopeat (1:1:1) (S2), compost + vermicompost + cocopeat (1:1:1) (S3), perlite + vermicompost + cocopeat (1:1:1) (S4) and compost + perlite + vermicompost + cocopeat (1:1:1:1) (S5)), and mycorrhizal at 2 levels (no inoculation as control (M0) and inoculation (M1)). The results indicated a significant effect of culture substrate and mycorrhizal on germination and growth characteristics of papaya varieties. In the mycorrhizal inoculation treatment, the highest germination percentage (77.33%) and germination speed index (0.63) were observed in the Bangladeshi variety and the lowest average germination time for both varieties . The highest seedling height and root length were recorded for V1S4M1 and V2S5M1 treatments, and the highest shoot dry weight (0.276 g) was recorded for V2S5M1 treatment. According to the obtained results, inoculation of seeds in both Red Lady and Bangladeshi papaya varieties with mycorrhizal fungi and substrates containing organic matter, especially vermicompost, improved the germination and growth characteristics of the seedlings. Therefore, according to the advantages and compatibility of mycorrhizal fungi, it can be used as a suitable treatment to improve the germination and growth of papaya seedlings.

Keywords


Abdul-Baki, A. A. 1974. Hypochlorite and tissue sterilization. Planta. 115(4): 373-376. Doi:10.1007/BF00388620.
Abdul-Baki, A. A., and J. D. Anderson. 1973. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13(6): 630-633. Doi: 10.2135/cropsci1973.0011183X001300060013x.
Akiyama, K., K. I. Matsuzaki, and H. Hayashi. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435: 824-827. Doi: 10.1038/nature03608.
Awang, Y., A. S. Shaharom, R. B. Mohamad, and A. Selamat. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Am. J. Agric. Biol. Sci. 4(1): 63-71. Doi: 10.3844/ajabssp.2009.63.71.
Besserer, A., V. Puech-Pagès, P. Kiefer, V. Gomez-Roldan, A. Jauneau, S. Roy, J. C. Portais, C. Roux, G. Bécard, and N. Séjalon-Delmas. 2006. Strigolactones stimulate Arbuscular mycorrhizal fungi by activating mitochondria. Plos Biol. 4(7): e226. Doi: 10.1371/journal.pbio.0040226.
Bhardwaj, R. L. 2013. Effects of nine different propagation media on seed germination and the initial performance of papaya (Carica papaya L.) seedlings. J. Hortic. Sci. Biotechnol. 88(5): 531-536. Doi: 10.1080/14620316.2013.11513002.
Čabilovski, R., M. S. Manojlović, B. M. Popović, M. T. Radojčin, N. Magazin, K. Petković, D. Kovačević, and M. D. Lakićević. 2023. Vermicompost and vermicompost leachate application in strawberry production: Impact on yield and fruit quality. Horticulturae. 9: 337. Doi: 10.3390/horticulturae9030337.
Chabaud, M., C. Venard, A. Defaux-Petras, G. Bécard, and D. G. Barker. 2002. Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol. 156(2): 265-273. Doi: 10.1046/j.1469-8137.2002.00508.x.
Chacko, E. K., and R. N. Singh. 1971. Studies on the longevity of papaya, phalsa, guava and mango seeds. Agric. Food Sci. 36: 147-158.
Cho, E. J., D. J. Lee, C. D. Wee, H. L. Kim, Y. H. Cheong, J. S. Cho, and B. K. Sohn. 2009. Effects of AMF inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci. Hortic. 122(4): 633-637. Doi: 10.1016/j.scienta.2009.06.025.
Choudhary, R. C., J. Kanwar, and P. Singh. 2022. Effect of gibberellic acid (GA3) and growing media on seedling growth parameters of papaya (Carica papaya L.) cv. Pusa Nanha. J. Pharm. Innov. 11(1): 247-251.
Cruz, A., T. Ishii, and K. Kadoya. 2000. Effects of arbuscular mycorrhizal fungi on tree growth, leaf water potential, and levels of 1-aminocyclopropane-1-carboxylic acid and ethylene in the roots of papaya under water-stress conditions. Mycorrhiza. 10: 121-123. Doi: 10.1007/s005720000067.
Desai, D. H., R. V. Tank, K. D. Desai, H. S. Desai, V. S. Mehta, and D. D. Champaneri. 2022. Effect of Arbuscular mycorrhizal fungi and bio-inoculants on germination and seedling growth of carica papaya L. Var. gujarat junagadh papaya-1. Int. J. Plant Soil Sci. 34(17): 1-10. Doi: 10.9734/IJPSS/2022/v34i1731030.
Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant Growth-Promoting Effects of Diazotrophs in the Rhizosphere. Plant Sci. 22(2): 107-149. Doi: 10.9734/IJPSS/2022/v34i1731030.
Dotto, J. M., and S. A. Abihudi. 2021. Nutraceutical value of Carica papaya: a review. Sci. Afr. 13: e00933. Doi: 10.1016/j.sciaf.2021.e00933.
Ellis, R. H., and E. H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9: 373-409.
Garcia-Gonzalez, J., and M. Sommerfeld. 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 28: 1051-1061. Doi: 10.1007/s10811-015-0625-2.
Gutowski, V. 2015. The effect of mycorrhizae on seed germination, development, and reproductive yield of Rapid Gro Radish. Essai. 13(1): 43-46.
Hassan, S. A. M., R. A. Taha, N. S. Zaied, and E. M. Essa. 2022. Effect of vermicompost on vegetative growth and nutrient status of acclimatized Grand Naine banana plants. Heliyon. 8(10): e10914. Doi: 10.1016/j.heliyon.2022.e10914.
Hodge, A. 2014. Interactions between Arbuscular mycorrhizal fungi and organic material substrates. Adv. Appl. Microbiol. 89: 47-99. Doi: 10.1016/B978-0-12-800259-9.00002-0.
Jackson, D. K. 1974. Some characteristics of perlite as an experimental growth medium. Plant Soil. 40: 161-167. Doi: 10.1007/BF00011418.
Jaihan, W., V. Mohdee, S. Sanongraj, U. Pancharoen, and K. Nootong. 2022. Biosorption of lead (II) from aqueous solution using Cellulose-based Bio-adsorbents prepared from unripe papaya (Carica papaya) peel waste: Removal Efficiency, Thermodynamics, kinetics and isotherm analysis. Arab. J. Chem. 15(7): 103883. Doi: 10.1016/j.arabjc.2022.103883.
Kosuta, S., M. Chabaud, G. Lougnon, C. Gough, J. Dénarié, D. G. Barker, and G. Bécard. 2003. A diffusible factor from Arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 Expression in Roots of Medicago truncatula. Plant Physiol. 131(3): 952-962. Doi: 10.1104/pp.011882.
Kosuta, S., S. Hazledine, J. Sun, H. Miwa, R. J. Morris, J. A. Downie, and G. E. D. Oldroyd. 2008. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc. Natl. Acad. Sci. 105(28): 9823-9828. Doi: 10.1073/pnas.0803499105.
Madani, B., and M. Boroujerdnia. 2019. Postharvest physiology of papaya. Res. Achiev. Field Hortic. Crops. 8(1): 106-115. (In Persian). Doi: 10.22092/rafhc.2019.122311.1148.
Maguire, J. D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 2: 176-177. Doi: 10.2135/cropsci1962.0011183X000200020033x.
Meng, X., J. Dai, Y. Zhang, X. Wang, W. Zhu, X. Yuan, H. Yuan, and Z. Cui. 2018. Composted biogas residue and spent mushroom substrate as a growth medium for tomato and pepper seedlings. J. Environ. Manage. 216: 62-69. Doi: 10.1016/j.jenvman.2017.09.056.
Nautiyal, B. D., C. P. Sharma, and S. C. Agarwala. 1986. Iron, zinc and boron deficiency in papaya. Sci Hortic. 29(1): 115-123. Doi: 10.1016/0304-4238(86)90037-3.
Pant, P., and M. K. Verma. 2022. Standardization of media and container for improving seed and seedling growth in papaya (Carica papaya) cv. Red Lady. Indian J. Agric. Sci. 92(3): 329-333. Doi: 10.56093/ijas.v92i3.122680.
Sharma, P., R. Yadav, M. Jain, and C. Bhateshwar. 2021. Growing media and cow urine influence the seed germination and seedling growth of Papaya (Carica papaya L.). J. Crop Weed. 17(3): 253-259. Doi: 10.22271/09746315.2021.v17.i3.1520.
Sohn, B. K., K. Y. Kim, S. J. Chung, W. S. Kim, S. M. Park, J. G. Kang, Y. S. Rim, J. S. Cho, T. H. Kim, and J. H. Lee. 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hortic. 98(2): 173-183. Doi: 10.1016/S0304-4238(02)00210-8.
Tavares, A. R., P. L. F. dos Santos, A. R. Zabotto, M. V. L. do Nascimento, H. W. C. Jordão, R. L. V. Boas, and F. Broetto. 2020. Seaweed extract to enhance marigold seed germination and seedling establishment. SN Appl. Sci. 2: 1792. Doi: 10.1007/s42452-020-03603-3.
Wilson, S. B., P. J. Stoffella, and D. A. Graetz. 2001. Use of compost as a media amendment for containerized production subtropical perennials. J. Environ. Hortic. 19(1): 37-42. Doi: 10.24266/0738-2898-19.1.37.
Ziane, H., N. Hamza, and A. Meddad-Hamza. 2021. Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. J. Saudi Soc. Agric. Sci. 20(7): 454-458. Doi: 10.1016/j.jssas.2021.05.009.