Document Type : Original Article

Authors

1 Research assistant professor, Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

2 Senior expert in seed health laboratory, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj, Iran.

Abstract

This study was carried out based on complete randomized design in four replications in order to assess germination and seedling vigor of barely seeds Cv. Goharan exposed to Zn-micronutrient element and different fungicides. Evaluated treatments on Barely seeds include six fungicide treatments Dividend star (2 per 1000), Carboxin Thiram (2.5 per 1000), Raxil (0.5 per 1000), Lamardor (0.2 per 1000), Rovral-TS (2.5 per 1000) and non-fungicide, and three Zn-seed treatments, Zn-Kavin, Zn-Zagorat and non-Zn seed treatment. Barely seed germination was two percent lower than control compared with Zn-seed treatments. The lengths of radicle (12%), shoot (20%), and seedling (13%) after seeds treated with Zn-seed treatments along with Rovral-TS and Carboxin Thiram were more than the ones were recorded with liquid Dividend star. Other fungicides except liquid Dividend star showed similar response to control about seedling length vigor index. The highest rate germination (R50, 1.20) was belonging to Rovral-TS, Carboxin Thiram, and Raxil fungicides in combination with Zn-seed treatments, Moreover, the lowest time to reach maximum of germination (less than 2 days) was recorded in mentioned treatments. However, two fungicides of liquid Dividend star and liquid Lamardor had lower germination rate (1.01) than control (1.06 till 1.1), so these two fungicides usage with such condition was not suggested in this study. In conclusion, Rovral-TS and Carboxin Thiram along with Kavin and Zagorat Zn-seed treatments were suggested to improve germination and seedling vigor of barely indices.

Keywords

Adhikari, T., Kundu, S., & Rao, A. S. (2016). Zinc delivery to plants through seed coating with nano-zinc oxide particles. Journal of Plant Nutrition, 39(1), 139–149. https://doi.org/10.1080/01904167.2015.1087562
Anonymous. (2022). ISTA: International rules for seed testing. International Seed Testing Associations.
Anonymous. (2023). Agricultural statistics in 2022 year: Field crops (1st ed., pp. 1–103).
Attri, V., Pant, K. S., & Tiwari, P. (2018). Effect of seed size and pre-sowing treatment on germination of some important trees—a review. Research Journal of Chemical and Environmental Sciences, 6(1), 104–113.
Ayesha, M. S., Suryanarayanan, T. S., Nataraja, K. N., Prasad, S. R., & Shaanker, R. U. (2021). Seed treatment with systemic fungicides: Time for review. Frontiers in Plant Science, 12, 654512. https://doi.org/10.3389/fpls.2021.654512
Binsfeld, J. A., Barbieri, A. P. P., Huth, C., Cabrera, I. C., & Henning, L. M. M. (2014). Use of bioactivator, biostimulant, and nutrient complex in soybean seeds. Pesquisa Agropecuária Tropical, 44(1), 88–94. https://doi.org/10.1590/S1983-40632014000100010
Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2011). Function of nutrients: Micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 135–166). Elsevier. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1–2), 1–17. https://doi.org/10.1007/s11104-007-9466-3
Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanido, M. E. (2011). Zinc and human health: An update. Archives of Toxicology, 86(3), 521–534. https://doi.org/10.1007/s00204-011-0775-1
Domart, F., Cloetens, P., Roudeau, S., Carmona, A., Verdier, E., Choquet, D., & Ortega, R. (2020). Correlating STEM and synchrotron nano-imaging unveils co-segregation of metals and cytoskeleton proteins in dendrites. eLife, 9, e62334. https://doi.org/10.7554/eLife.62334
Donia, D. T., & Carbone, M. (2023). Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. International Journal of Molecular Sciences, 24(21), 17612. https://doi.org/10.3390/ijms242417612
Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO₂ and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Environmental Monitoring and Assessment, 13, 822–828. https://doi.org/10.1007/s10661-011-1844-6
Ergin, N., Kulan, E. G., & Demir Kaya, M. (2021). The effects of fungicidal seed treatments on seed germination, mean germination time, and seedling growth in safflower (Carthamus tinctorius L.). Selcuk Journal of Agriculture and Food Sciences, 35(2), 139–143. https://doi.org/10.15316/SJAFS.2021.240
Farooq, M., Amanullah, R. A., Nawaz, A., Nadeem, A., Wakeel, A., Nadeem, F., & Siddique, K. H. M. (2018). Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry-seeded and puddled-transplanted production systems. Field Crops Research, 216, 53–62. https://doi.org/10.1016/j.fcr.2017.11.004
Ghaderi-Far, F., & Soltani, A. (2014). Seed testing and control. Publications University of Mashhad.
Gogna, R., Shee, K., & Moreno, E. (2015). Cell competition during growth and regeneration. Annual Review of Genetics, 49, 697–718. https://doi.org/10.1146/annurev-genet-112414-055214
Hampton, J. G., & Hill, M. J. (2002). Seed quality and New Zealand’s native plants: An unexplored relationship? New Zealand Journal of Botany, 40(3), 357–364. https://doi.org/10.1080/0028825X.2002.9512796
Iwuagwu, C. C., Ozofor, P. C., Aguwa, U. O., Iheaturu, D. E., Apalowo, O. A., Ejiofor, M. E., & Iwu, D. C. (2023). Effects of variety and fungicides on germination percentage and seedling vigor of rice (Oryza sativa L.) seeds. International Journal of Food Science and Agriculture, 7(1), 85–94.  https://doi.org/10.26855/ijfsa.2023.03.013
Jakusek, M., Brennensthul, M., Markowska, J., Wolski, K., & Sobol, L. (2020). Effect of a micronutrient fertilizer and fungicide on the germination of perennial ryegrass seeds (Lolium perenne L.) in field conditions. Agronomy, 10(12), 1978. https://doi.org/10.3390/agronomy1012197
Lamichhane, J. R., You, M. P., Laudinot, V., Barbetti, M. J., & Aubertot, J. N. (2020). Revisiting sustainability of fungicide seed treatments for field crops. Plant Disease, 104(3), 610–623. https://doi.org/10.1094/PDIS-06-19-1157-FE
Lin, D. H., & Xing, B. S. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250. https://doi.org/10.1016/j.envpol.2007.01.016
Ludwig, Y., & Slamet-Loedin, I. H. (2019). Genetic biofortification to enrich rice and wheat grain iron: From genes to product. Frontiers in Plant Science, 10, 833. https://doi.org/10.3389/fpls.2019.00833
Lugtenberg, B. J., Caradus, J. R., & Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92, fiw194. https://doi.org/10.1093/femsec/fiw194
Machado, C. G., Silva, G. Z. D., Cruz, S. C. S., Anjos R. C. L. D., Silva, C. L., Matos, L. F. L. D., & Smaniott, A. O. (2023). Germination and vigor of soybean and corn seeds treated with mixed mineral fertilizers. Plants, 12(2), 338. https://doi.org/10.3390/plants12020338
Mahdieh, M., Sangi, M. R., Bamdad, F., & Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition, 41(13), 2401–2412. https://doi.org/10.1080/01904167.2018.1510517
Marcondes, M., Andreoli, C., & Miglioranza, E. (2011). Viability equation to determine the longevity of fungicide-treated seeds of wheat stored in a conventional warehouse. Acta Scientiarum. Agronomy, 33(4), 539–544. https://doi.org/10.4025/actasciagron.v33i3.6455
Marschner, H. (1996). Mineral nutrition of higher plants (2nd ed.). Academic Press.
Nikkhah, H. R., Yousefi, A., Qazvini, H., Sorkhi, B., Jasemi, S-Sh., Patpour, M., Taheri, M., et al. (2018). Goharan, A new terminal drought-tolerant barley cultivar with high water use productivity for cultivation in the moderate agro-climate zone of Iran. Research Achievements for Field and Horticultural Crops, 7(1), 83–95. https://doi.org/10.22092/rafhc.2018.116849.1111
Nissar, R., Zahida, R., Kanth, R. H., Manzoor, G., Shafeeq, R., Ashaq, H., Waseem, R., Bhat, R. A., Bhat, M. A., & Tahir, S. (2019). Agronomic biofortification of major cereals with zinc and iron: A review. Agricultural Reviews, 40(1), 21–28. https://doi.org/10.18805/ag.R-1860
Orchard, T. (1977). Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1), 61–69. https://doi.org/10.2298/SSAT7701061O
Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, H. J., Sayers, Z., & Cakmak, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128(1), 144–152. https://doi.org/10.1111/j.1399-3054.2006.00737.x
Persaud, R., Gilkes, J., Gowan, D., Singh, N., Persaud, D. A., Charles, E., & Subramanian, G. (2023). Influence of fungicidal seed treatments against pathogen complex found on paddy seed and their effects on seedling germination, growth, and plant vigor. Journal of Sustainable Development, 16(4), 100–115. https://doi.org/10.5539/jsd.v16n4p100
Pimentao, A. R., Cuco, A. P., Pascoal, C., Cassio, F., & Castro, B. B. (2024). Current trends and mismatches on fungicide use and assessment of the ecological effects in freshwater ecosystems. Environmental Pollution, 347, 123678. https://doi.org/10.1016/j.envpol.2024.123678
Ranal, M., & De Santana, D. G. (2006). How and why to measure the germination process? Revista Brasileira de Botanica, 29(1), 1–11. https://doi.org/10.1590/S0100-84042006000100002
Rehman, A., Farooq, M., Nawaz, A., Al-Sadi, A. M., Al-Hashmi, K. S., Nadeem, F., & Ullah, A. (2018). Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. Journal of the Science of Food and Agriculture, 98, 4824–4836. https://doi.org/10.1002/jsfa.9010
Rehman, H., Aziz, T., Farooq, M., Wakeel, A., & Rengel, Z. (2012). Zinc nutrition in rice production systems: A review. Plant and Soil, 361(1), 203–226. https://doi.org/10.1007/s11104-012-1346-9
Rossini, A., Ruggeri, R., & Rossini, F. (2024). Discriminating among alternative dressing solutions for cereal seed treatment: Effect on germination and seedling vigor of durum wheat. International Journal of Plant Biology, 15, 230–241. https://doi.org/10.3390/ijpb15020019
Rothrock, C. S., Winters, S. A., Miller, P. K., Gbur, E., Verhalen, L. M., & Greenhagen, B. E. (2012). Importance of fungicide seed treatment and environment on seedling diseases of cotton. Plant Disease, 96(7), 1805–1817. https://doi.org/10.1094/PDIS-01-12-0031-SR
Safari Motlagh, M., Farokhzad, R., Kaviani, M., Kulus, B., & Endophytic, D. (2022). Fungi as potential biocontrol agents against Sclerotium rolfsii Sacc.—the causal agent of peanut white stem rot disease. Cells, 11(17), 2643. https://doi.org/10.3390/cells11172643
Singh, B., Natesan, S. K. A., Singh, B. K., & Usha, K. (2003). Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88(1), 36–44.
Soltani, A., & Maddah, V. (2010). Simple, applied programs for education and research in agronomy. Shahid Beheshti University Press. [In Persian]
Steinberg, G., & Gurr, S. J. (2020). Fungi, fungicide discovery, and global food security. Fungal Genetics and Biology, 144, 103476. https://doi.org/10.1016/j.fgb.2020.103476
Tavakoli Kakhki, H. R., & Beheshti, A. R. (2010). Wheat seed treatment and its effect on seed vigor indices from a bioenvironmental aspect. Agricultural Ecology, 2, 168–174. [In Persian]
Ullah, A., Farooq, M., Hussain, M., Ahmad, R., & Wakeel, A. (2019). Zinc seed coating improves emergence and seedling growth in desi and kabuli chickpea types but shows toxicity at higher concentration. International Journal of Agriculture and Biology, 21, 553–559. https://doi.org/10.17957/IJAB/15.0928
Veena, M., & Puthur, J. T. (2022). Seed nutripriming with zinc is an apt tool to alleviate malnutrition. Environmental Geochemistry and Health, 44, 2355–2373. https://doi.org/10.1007/s10653-021-01054-2