Document Type : Original Article

Authors

1 Associate Professor, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran.

2 Assistant Professor, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran.

3 Researcher, Research Institute of Forests and Rangelands, Agricultural Research Education and extension Organization (AREEO), Tehran, Iran.

4 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

To investigate the cardinal temperature of three medicinal species of Nepata haussknechtii, N. pogonosperma and N. glomerulosa subsp. staffina and determining the appropriate temperature and time conditions for their planting, a factorial experiment was carried out in the form of a completely randomized design in three replications in 2023 in the Seed Technology Research Laboratory of the Gene Bank of Natural Resources of Iran. Three non-linear regression models, including dent-like, segmented and beta, were evaluated at eight temperature levels (5, 10, 15, 20, 25, 30, 35 and 40°C) to describe the response of the seed germination rate of three Nepeta species to temperature. Statistical indices such as root mean square (RMSE) and coefficient of explanation (R2) were used to compare the models.The results showed that the parameters estimated using the dent-like model in N. haussknechtii include base temperature, optimal lower temperature, optimal upper temperature, ceiling temperature, R2 and RMSE values were 9.01°C, 20°C, 25°C, 36.21°C, 0.94 and 0.11, respectively; segmented model in the N. pogonosperma include base temperature, optimal temperature, ceiling temperature, R2 and RMSE values were 9°C, 23°C, 36.14°C, 0.95 and 0.31, respectively; and beta model in the N. glomerulosa subsp. staffina include base temperature, optimal temperature, ceiling temperature, R2 and RMSE values were 9.84°C, 24.95°C, 37°C, 0.99 and 0.03, respectively had more confidence. The results of this experiment showed that in the different studied species of Nepeta, due to the similar initial growth rate, they have the same germination peak.

Keywords

Adam, N. R., Dierig, D. A., Coffelt, T. A., & Wintermeyer, M. J. (2007). Cardinal temperatures for germination and early growth of two Lesquerella species. Industrial Crops and Products, 25(1), 24–33. https://doi.org/10.1016/j.indcrop.2006.06.001
Agrawal, R. L. (2004). Seed technology. Oxford IBH Pub.
Alvarado, V., & Bradford, K. J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25(9), 1061–1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x
Amiri Monfared, V., Hashemi, A., Mamedi, A., & Tavakkol Afshari, R. (2018). Evaluation of germination characteristics and determination of cardinal temperatures of poppy (Papaver somniferum) seed. Iranian Journal of Seed Science and Technology, 6(2), 229–239. https://doi.org/10.22034/ijsst.2018.116771 [In Persian]
Bannayan, M., Nadjafi, F., Rastgoo, M., & Tabrizi, L. (2006). Germination properties of some wild medicinal plants from Iran. Journal of Seed Technology, 28(1), 80–86. https://doi.org/10.1016/0098-8472(91)90046-Q
Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Plenum Press.
Boroumand Rezazadeh, Z., & Koocheki, A. (2006). Evaluation of cardinal temperature for three species of medicinal plants, ajowan (Trachyspermum ammi), fennel (Foeniculum vulgare), and dill (Anethum graveolens). Biaban (Desert Journal), 11(2), 11–16. https://doi.org/10.22059/JDESERT.2006.31870 [In Persian]
Bradford, K. J. (2002). Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2), 248–260. https://doi.org/10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2
Copeland, L. O., & McDonald, M. B. (1995). Principles of seed science and technology. Chapman and Hall.
Ellis, R. H., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9(2), 373–409.
Ellis, R. H., Hong, T. D., Astley, D., Pinnegar, A. E., & Kraak, H. L. (1996). Survival of dry and ultra-dry seeds of carrot, groundnut, lettuce, oilseed rape, and onion during five years; hermetic storage at two temperatures. Seed Science and Technology, 24(2), 347–358.
Fakhrrad, S. F., Ghanbari, A., & Rastgoo, M. (2019). Estimation of cardinal temperatures of Carthamus oxycantha germination using different regression models. Journal of Iranian Plant Protection Research, 32(3), 569–578. https://doi.org/10.22067/jpp.v32i4.66879
Ganjeali, A., Parsa, M., & Amiri-Deh-Ahmadi, S. R. (2011). Determination of cardinal temperatures and thermal time requirement during germination and emergence of chickpea (Cicer arietinum L.) genotypes. Iranian Journal of Pulses Research, 2(2), 97–108. https://doi.org/10.22067/ijpr.v2i2.19070 [In Persian]
Golmohammadzadeh, S., Zaefarian, F., Rezvani, M., & Chauhan, B. S. (2022). Quantifying cardinal temperatures and thermal time for seed germination of Papaver dubium and P. rhoeasPlant Ecology and Diversity, 15(1), 67–76. https://doi.org/10.1080/17550874.2022.2088423
Hakansson, I., Myrbeck, A., & Ararso, E. (2002). A review of research on seedbed preparation for small grains in Sweden. Soil and Tillage Research, 64(1), 23–40. https://doi.org/10.1016/S0167-1987(01)00255-0
Hanson, C. V., Oelke, E. A., Putnam, D. H., & Oplinger, E. S. (1992). Psyllium. In Alternative field crops manual. University of Wisconsin-Extension, Cooperative Extension.
Hashemi, A., Baruti, S. H., & Tavakol Afshari, R. (2017). Determine the cardinal temperatures of Marguerite seed (Chrysanthemum maximum Ramond). Iranian Journal of Seed Science and Technology, 5(2), 77–84. https://doi.org/10.22034/ijsst.2017.108163 [In Persian]
Hashemi, A., Tavakkol Afshari, R., & Tabrizi, L. (2016). Quantifying seed germination response of Plantago ovata under temperature and drought stress regimes. Journal of Iranian Agricultural Plants Science, 47(1), 1–7. https://doi.org/10.22092/ijsst.2020.107995.1006 [In Persian]
Hashemi, A., Sharif Zadeh, F., Maali Amiri, R., & Tavakkol Afshari, R. (2020). Evaluation of germination of safflower seed (Carthamus tinctorius L.) Faraman cultivar under water deficit stress and determination of cardinal germination temperatures. Iranian Journal of Seed Science and Technology, 9(1), 73–83. https://doi.org/10.22034/ijsst.2020.128718.1315 [In Persian]
Iannucci, A., Fonzo, N. D., & Martiniello, P. (2000). Temperature requirements for seed germination in four annual clovers grown under two irrigation treatments. Seed Science and Technology, 28(1), 59–66.
Jalilian, A., Mazaheri, D., Tavakkol Afshari, R., Rahimian, R., Abdollahian, H., & Gohari, J. (2004). Estimation of base temperature and the investigation of germination and field emergence trend of monogerm sugar beet under various temperatures. Journal of Sugar Beet, 20(2), 97–112. https://doi.org/10.22092/jsb.2005.6866
Jame, Y. W., & Cutforth, H. W. (2004). Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3), 207–218. https://doi.org/10.1016/j.agrformet.2004.01.012
Jami Al-Ahmadi, M., & Kafi, M. (2007). Cardinal temperatures for germination of Kochia scoparia L. Journal of Arid Environments, 68, 308–314. https://doi.org/10.1016/j.jaridenv.2006.05.006
Kamkar, B., Koocheki, A. R., Nassiri Mahallati, M., & Rezvani Moghaddam, P. (2006). Cardinal temperatures for germination in three millet species (Panicum miliaceumPennisetum glaucum, and Setaria italica). Asian Journal of Plant Science, 5, 316–319. https://doi.org/10.3923/ajps.2006.316.319
Kamkar, B., Jami Al-Ahmadi, M., Mahdavi-Damghani, A., & Villalobos, F. J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using nonlinear regression models. Industrial Crops and Products, 35, 192–198. https://doi.org/10.1016/j.indcrop.2011.06.033
Mamedi, A., Salehi Shanjani, P., & Divargar, F. (2022). Response of Festuca arundinacea seed germination to temperatures, water potentials, and priming treatments using hydro- and thermal-time models. Physiology and Molecular Biology of Plants, 28, 1545–1558. https://doi.org/10.1007/s12298-022-01229-w
Mwale, S. S., Azam-Ali, S. N., Clark, J. A., Bradley, R. G., & Chataha, M. R. (1994). Effect of temperature on germination of sunflower (Helianthus annuus L.). Seed Science and Technology, 22, 565–571.
Najafi, F. (2001). The effect of different irrigation regimes and density on the quality and quantity of the medicinal plant Esforza (Plantago ovata Forsk). Master’s thesis, Faculty of Agriculture, Ferdowsi University of Mashhad. [In Persian]
Parmoon, G. H., Moosavi, S. A., Akbari, H., & Ebadi, A. (2015). Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal, 3, 145–151. https://doi.org/10.1016/j.cj.2014.11.003
Ramin, A. A. (1997). The influence of temperature on germination of Taree (Allium ampeloprasum L. spp. iranicum W.). Seed Science and Technology, 25, 419–426.
Shafii, B., & Price, W. J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological, and Environmental Statistics, 6, 356–366. https://doi.org/10.1198/108571101317096569
Soltani, A., & Maddah, V. (2010). Simple, applied programs for education and research in agronomy. Shahid Beheshti University Press. [In Persian]
Rabiei, A., Nezami, A., Goldani, M., Khajeh-Hosseini, M., & Nassiri Mahallati, M. (2017). Cardinal temperatures for seed germination of six ecotypes of Plantago majorIranian Journal of Seed Science and Technology, 6(1), 57–68. https://doi.org/10.22034/ijsst.2017.113288 [In Persian]
Taher Abadi, Sh., Goldani, M., Taher Abadi, Sh., & Fazeli Kakhki, F. (2014). Determination of cardinal temperatures in the seeds of henbane, aconite, and hemp. Journal of Iranian Plant Protection Research, 29(1), 16–22. https://doi.org/10.22067/jpp.v29i1.22196
Ali, T., Javan, M., Sonboli, A., & Semnanian, S. (2011). Antinociceptive and anti-inflammatory activities of the essential oil of Nepeta in experimental rat models. Natural Product Research, 26(16), 1529–1534. https://doi.org/10.1080/14786419.2011.565284
Thygerson, T., Harris, J. M., Smith, B. N., Hansen, L. D., Pendleton, R. L., & Booth, D. T. (2002). Metabolic response to temperature for six populations of winter fat (Eurotia lanata). Thermochimica Acta, 394(1–2), 211–217. https://doi.org/10.1016/S0040-6031(02)00253-8
Tolyat, M. A., Afshari, R. T., Jahansoz, M. R., Nadjafi, F., & Naghdibadi, H. A. (2014). Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. daenensisSeed Science and Technology, 42(1), 28–35. https://doi.org/10.15258/sst.2014.42.1.03
Trudgill, D. L., Squire, G. R., & Thompson, K. (2000). A thermal time basis for comparing the germination requirements of some British herbaceous plants. New Phytologist, 145(1), 107–114. https://doi.org/10.1046/j.1469-8137.2000.00554.x
Ueno, K. (2003). Effect of temperature during immature seed germination. Seed Science and Technology, 31, 587–595. https://doi.org/10.15258/sst.2003.31.3.08