تأثیر پیش‌تیمار با اسید جیبرلیک بر دماهای کاردینال جوانه‌زنی بذر گیاه گل گاوزبان (Borage officinalis L)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی

2 دانشگاه محقق اردبیلی

3 عضو هیأت علمی گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.

4 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

چکیده

در آزمایشی که در سال 1397، در آزمایشگاه تکنولوژی بذر دانشگاه کشاورزی و منابع طبیعی خوزستان انجام گرفت، به‌بررسی اثر پیش‌تیمار بر تغییرات دماهای کاردینال و نیاز زمان-گرمایی بذر ‌گل‌گاوزبان اروپایی پرداخته شد. آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی و عوامل آزمایشی شامل پیش‌تیمار بذر با اسیدجیبرلیک در غلظت‌های صفر ( آب مقطر به‌عنوان شاهد)،100، 200 و 400 میلی‌گرم در لیتر، مدت زمان پیش‌تیمار (6 و 12 ساعت) و دما در 7 سطح (5، 10، 15، 20، 25، 30 و 35 درجه سلسیوس) در سه تکرار انجام شد. مدل‌های بتا، بتای اصلاح شده، دندانه‌ای و دو‌تکه‌ای به‌منظور تعیین دماهای کاردینال استفاده شد. نتایج نشان داد که در مدت زمان‌های 6 و 12 ساعت پیش‌تیمار، با افزایش دما و غلظت هورمون اسیدجیبرلیک میزان جوانه‌زنی افزایش یافت، به‌طوری که بیشترین درصد جوانه‌زنی در دمای 15 درجه سلسیوس و غلظت 200 میلی‌گرم در لیتر مشاهده گردید. افزایش غلظت اسید جیبرلیک موجب شد مقدار زمان گرمایی بیشتری برای دستیابی به 50درصد جوانه‌زنی کل نیاز باشد. همچنین مشخص شد، مدل بتا نسبت به سایر مدل‌ها دارای دقت بیشتری در تخمین جوانه‌زنی بذرهای ‌گل‌گاوزبان است. بر این اساس، دمای پایه، مطلوب و سقف با توجه به مدل بتا برای ‌گل‌گاوزبان به‌ترتیب 51/0، 5/21 و 1/35 درجه‌ سلسیوس بوده که در اثر کاربرد 200 میلی‌گرم بر لیتر اسید جیبرلیک به 33/0، 5/23 و 8/35 درجه سلسیوس تغییر یافت.

کلیدواژه‌ها


Alvarado, V., and K.J. Bradford. 2006. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant. Cell Environ. 25(8): 1061-1069.
Aghazadeh, A., Gh. Parmon, A. Samadi-Kalkhoran, Z. Jodi, and B. Ismail-Pour. 2016. Determine the optimum temperature for germination of medicinal (Cantharanthus roseus), (Calendula officianalis) and (Silybum marianum L). Res. J. Seed Sci. 2: 23-11. (In Persian)
Ajam-Norouzi, H., A.E. Soltani, Majidi, and M. Homaei. 2007. Modeling response of emergence to temperature in (Faba bean L.) under field condition. J. Agric. Sci. Nat. Res, 14: 100-111.
Akram-Ghaderi F., A. Soltani, and H.R. Sadeghipour. 2008. Cardinal temperatures of germination medicinal Pumpkin (Cucurbita pepo convar. Pepo var. styriaca), Borago (Borago officinalis L.) and Black cumin (Nigella sativa L.). J. Plant Sci. 7(6): 574-578.
Alipoor, Z. and S. Mahmodi. 2015. Effect of different temperature on germination properties of fennel (Foeniculum vulgare Mill.), Cannabis (Cannabis sativa L.) and Sesame (Sesamus indicum L.). Iranian J. Seed Res. 2(1): 37-51. (In Persian, with English Abstract)
Ashraf, M., and M.R. Foolad. 2005. Effect of thermopriming on activities of enzymes in the germinating Seed Adv. Agron. 88: 248–252.
Awan, S. Z., J.O. Chandler, P.J. Harrison, M.J. Sergeant, T.D. Bugg, and A. J. Thompson., 2017. Promotion of germination using hydroxamic acid inhibitors of 9-cis-epoxycarotenoid dioxygenase. Front. Plant Sci. 8: 357-362.
Azimi, R., M. Khajehhosseini, and F. Fallahpour. 2013. Evaluation of seed germination properties of Bromus (Bromus kopetdaghensis Drobov) under different temperature treatments., Iranian J. Nat. Resour. 67(2): 253-261. (In Persian)
Bahrani, A. and J. Pourreza. 2012. Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress. World Appl. Sci. 18(5): 633-641.
Bailly, C., A, Benamar, F. Corbineau, D. Come. 2000. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci. Res. 10: 35–42.
Carrie, A., E.F. Forcella, R. Gesch, D. Peterson, and J. Eklund. 2014. Seed germination of calendula in response to temperature. Ind. Crops. Prod. 52: 199–204.
Coolbear, P., A. Francis, and D. Grierson. 1984. The effect of low temperature pre-sowing treatment under the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 35: 1609–1617.
Dorri, M.A., B. Kamkar, M. Aghdasi, and E. Komshi-Kamar. 2014. Determine the best model to
evaluate the germination characteristics and cardinal temperatures of milk thistle. Iran J. Seed Sci.Tech. 3: 189-200. (In Persian)
Ebrahim, B., F. Goshchi, and M. Nasri. 2014. Investigation of hydropriming effects on some germination and growth characteristics of (Echium amoenum L.) under laboratorial conditions. Agron. Res. in the desert margin, 11(2): 97-83. (In Persian)
Eisvand, H.R., A. Sharafi, and A. Ismaeili. 2013. Effects of hydro and osmopriming in different temperatures on germination and seedling growth of Satureja khuzistanica Jamzad under drought stress. Iran. J. Medic. Aromat. Plants. 29(2): 343-357. (In Persian)
Farooq, M., S.M.A. Basra, E.A. Warraich, and A. Khaliq. 2006. Optimization of hydropriming Technigues for rice seed invigoration. Seed Sci. Technol. 34: 529-534.
Flores, J. and O. Briones. 2001. Plant life-form germination in a mexican inter- tropical and desert: effect of soil water potential and temperature. J. Arid Environ. 47: 485-497.
Ghassemi-Golezani, K., A. Asghar-Aliloo, M. Valizadeh, and M. Moghaddam. 2008. Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Not. Bot. Hortic. Agrobot. Cluj-Napoc. 36(1): 29-33.
Hardgree, S.P., and A.H. Winstral. 2006. Predicting germination response to temperature. Annu. Bot. 98: 403-410.
ISTA, 2013. International rules for seed testing. International Seed Testing Association
Jabbari, R., M. Amini-Dehaghi, F. Ganji-Arjenaki, and K. Agahi. 2011. How duration and methods of priming may affect the germination of cumin seeds (Cuminum cyminum L.). J. Crop Sci. 4(4): 23-30. (In Persian)
Jame, Y.W., and H.W. Cutforth. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric. For. Meteorol. 124: 207-218.
Kader, M.A., and S.C. Jutzi. 2004. Effect of thermal and salt treatments during imbibitions on germination and seedling growth of sorghum at 42/19ºC. J. Agron. Crop Sci. 190: 35-38.
Karavani, B., R. Tavakol-Afshar, N. Majnoon-Hosseini, and A. Mousavi. 2014. Evaluation of germination parameters of Scrophularia striata under water and salinity stresses at different temperatures. Iranian J. Crop Sci. 45: 265-275. (In Persian)
Lashkari, A., P.R. Rezvanimghadam, and A. Ghafouri. 2014. Determination of minimum, optimal and maximum germination temperatures of (Echium amoenum Fisch& Mey) using regression models. Iranian J. Field Crop Res. 12(2): 164-169. (In Persian)
Liopa-Tsakalidi, A., G. Kaspiris, G. Salahas, and P. Barouchas. 2012. Effect of salicylic acid (SA)
and gibberellic acid (GA1) pre-soaking on seed germination of Stevia (Stevia rebaudiana) under
salt stress. J. Med. Plant. Res. 6: 416-423.
Lonati, M., D.J. Moot, P. Aceto, A. Cavallero., and R.J. Lucas. 2009. Thermal time requirements for germination, emergence and seedling development of adventive legume and grass species. N. Z. J. Agric. Res. 52: 17–29.
Mwale, S.S., S.N. Azam-Ali, J.A. Clark, R.G. Bradley, and M.R. Chatha. 1994. Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Sci. Technol. 22: 565–571.
Nazari, N., A. Mamedi, and S.M. Bagher-Hoseine. 2017. The evaluation response of onion (Allium cepa) seed germination to temperature by Thermal-time analysis and determine cardinal temperatures by using nonlinear regression. Iran. J. Field Crop Sci. 48(4): 961-971. (In Persian)
Parmoon, G., S.A. Moosavi, H. Akbari, and A. Ebadi. 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum. Seed Crop J. 3(2): 145-151.
Parmoon, Gh, A. Ebadie, and M. Asadi, 2016.  Effect salinity stress on some germination characters and and growth seedling Silybum marianum and Echinops candidus. Iranian J. seed Sci. Technol.4: 39-52 (In Persian) 
Paparella, S., S.S. Araújo, G. Rossi, M. Wijayasinghe, D. Carbonera, and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant. Cell. Rep. 34(8): 1281-1293.
Patade, V.Y., K. Maya, and A. Zakwan. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res. J. Seed Sci. 4(3): 125 -136.
Piper, E.L., K.J. Boote, J.W. Jones, and S.S. Grimm. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Sci. 36: 1606–1614.
Ramin, A.A. 1997. The influence of temperature on germination of taree Irani (Allium ampeloprasum L.spp. iranicum W.). Seed Sci. Technol. 25: 419-426.
Rouhi, H.R., M.A. Aboutalebian, S.A. Moosavi, F.A. Karimi, F. Karimi, M. Saman, and M. Samadi. 2012. Change in several antioxidant enzymes activity of Berseem clover (Trifolium alexandrinum L.) by priming. Int. J. Agric. 2(3): 237- 243.
Rowse, H.R. and W.E. FinchSavage. 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub‐and supra‐optimal temperatures. New Phytol. 158(1): 101-108.
Scott, S., R. Jones, and W. Williams. 1984. Review of data analysis methods for seed germination. Crop Sci. 24: 1192–1199.
Soltani, A. and V. Maddah. 2010. Simple, applied programs for education and research in agronomy. Shahid Beheshti University Press, Tehran, Iran. (In Persian)
Soltani, A., S. Galeshi, E. Zainali, and N. Latifi. 2002. Germination, seed reserve utilization
and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.
Soltani, A., M.J. Robertson, B. Torabi, M. Yousefi-Dazand, and R. Sarparast. 2006. Modeling seedling emergence in chickpea as affected by temperature and sowing depth. Agric. For. Meteorol. 138: 156-167.
Soltani, E., F. Akram-Ghaderi, and A. Soltani. 2008. Applications of germination modeling on the response to temperature and water potential in seed science research. 1st Natl. Conf. Seed Sci. Technol. in Iran. Gorgan, Iran. (In Persian)
Soltani, E., S. Galeshi, B. Kamkar, and F. Akram-Ghaderi. 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Sci. Biotechnol, 2:32-36.
Tabrizi, L., A. Koocheki, M. Nassiri-Mahallati, and P. Rezvani-Moghaddam. 2008. Germination behaviour of cultivated and natural stand seeds of Khorasan thyme (Thymus transcaspicus Klokov) with application of regression models. Iran. J. Field Crop Res. 5: 249-257. (In Persian)
Wang, W.Q., S.Q. Song, S.H. Li, Y.Y. Gan, J.H. Wu, and H.Y. Cheng. 2009. Quantitative description of the effect of stratification on dormancy release of grape seeds in response to various temperatures and water contents. J. Exp. Bot. 60:3397–3406.
Yan, W. and L. A. Hunt. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84: 607–614.
Yin, X., M.J. Kropff, G. McLaren, and R.M. Visperas. 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteor. 77: 1–16.