مطالعه تأثیر کاربرد سلنیوم بر جوانه‌زنی بذر و رشد اولیه‌ی گیاهچه‌های سه گیاه دارویی بالنگوی شهری، قدومه و کاسنی تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اســتادیار، گــروه مهندســی تولیــد و ژنتیــک گیاهــی، دانشــکده علــوم و مهندســی کشــاورزی، دانشــگاه رازی، کرمانشــاه، ایــران

2 کارشناسی تولیدات گیاهی-گیاهان دارویی و معطر، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه،

چکیده

به‌منظور بررسی تأثیر شوری و سلنیوم بر جوانه‌زنی بذر سه گیاه دارویی بالنگوی شهری، قدومه و کاسنی پژوهشی به‌‌صورت آزمایش فاکتوریل بر پایه‌ی طرح کاملاً تصادفی با دو عامل شامل سطوح مختلف شوری و سلنیوم در سه تکرار اجرا شد. عامل اول شامل سطوح صفر، 2، 4، و 8 میلی‌مولار کلرید سدیم و عامل دوم سطوح صفر، 5، 10 و 20 میلی‌گرم بر لیتر سلنات‌سدیم بود. نتایج نشان داد، بر خلاف سلنیوم، شوری درصد جوانه‌زنی، شاخص‌های جوانه‌زنی و رشد اولیه‌ را در هر سه گیاه دارویی مورد مطالعه کاهش داد. درصد جوانه‌زنی قدومه 40 %، کاسنی 1/49% و بالنگوی شهری 5/52% بود که بیانگر حساسیت بیش‌تر قدومه نسبت به تنش شوری است، درحالیکه بالنگوی شهری تحمل بیشتری نسبت به تنش شوری نشان داد. با افزایش غلظت سلنیوم طول گیاهچه در هر سه گیاه دارویی مورد مطالعه نسبت به شاهد افزایش یافت. بیش‌ترین طول گیاهچه (20 میلی‌متر) در تیمار 20 میلی‌گرم سلنات‌سدیم همراه با غلظت 8 میلی‌مولار کلرید سدیم در قدومه مشاهده گردید و کم‌ترین طول گیاهچه در کاسنی (2/6 میلی‌متر) و در تیمار صفر میلی‌گرم سلنات‌سدیم همراه با غلظت 8 میلی‌مولار کلرید سدیم بود. به‌طور کلی می‌توان نتیجه گرفت سلنیوم (در سطح 20 میلی‌گرم سلنات‌سدیم) می‌تواند میزان جوانه‌زنی بذر و رشد دانهال هر سه گیاه دارویی را تحت شرایط تنش شوری افزایش دهد.

کلیدواژه‌ها


Abedi, S., A. Iranbakhsh, Z.O. Ardebili, and M. Ebadi. 2020. Seed priming with cold plasma improved early growth, flowering, and protection of Cichorium intybus against selenium nanoparticle. J. Theor. Appl. Phys. 14: 113-119.
Akbari, Sh, and Sh. Rezvan Bidokhti. 2015. Effect of Salinity on Germination Characteristics and Seedling Growth of Hofariqoon and alyssum Shirazi Medicinal Plants. Res. J. Seed Sci. 6(19): 34-44.
Ali, J., I.U. Jan, and H. Ullah. 2020. Selenium supplementation affects vegetative and yield attributes to escalate drought tolerance in okra. Sarhad J. Agric. 36(1): 120-129.
Alves, L.R., E.R. Prado, R.D. Oliveira, E.F. Santos, I.L. Souza, A.R. Reis, R.A. Azevedo, and P.L. Gratão. 2020. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicol. 29: 594-606.
Castañares, J., and C.A. Bouzo. 2019. Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic. Plant J. 5(2): 79-87.
Chu, J., X. Yao, and Z. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136: 355–363.
Ei, H.H., T. Zheng, M.U. Farooq, R. Zeng, Y. Su, Y. Zhang, Y. Liang, Z. Tang, X. Ye, X. Jia, and J. Zhu. 2020. Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice. Environ. Sci. Pollut. Res. 27: 16940–16949.
Galochkina, N.A., I.A. Glotova, and N.V. Podlesnykh. 2020. Influence of germination of wheat grain with selenium sources on the components of protein-carbohydrate complex. Environ. Earth Sci. 422(1): 1-9.
Ghanaatiyan, K, and H. Sadeghi. 2016. Evaluation of the effect of NaCl salt stress on some growth traits and antioxidant enzymes in two chicory (Cichorium intybus) seed ecotypes. Iranian J. Seed Sci. Res. 3(1): 33-45. (In Persian)
Ghasemi, V.M., S.S. Moghaddam, A. Rahimi, L. Pourakbar, and ´ J.P. c-Djordjevi´c. 2020. Winter cultivation and nano fertilizers improve yield components and antioxidant traits of Dragon’s Head (Lallemantia iberica (M.B.) Fischer & Meyer). Plants. 9(2): 1-15.
Han-Wens, S., H. Jing, L. Shu-Xuan, and K. Wei-Jun. 2010. Protective role of selenium on garlic growth under cadmium stress. Commun. Soil Sci Plant. 41: 1195-1204.
Huaran, H., L. Hao, and L. Feihu. 2019. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Ind. Crops Prod. 123: 254-261.
Javadi, H., M.J. Thiqah al-Islami, and S.G.R. Seyed Gholamreza Mousavi. 2014. Investigation of the effect of salinity on germination and initial seedling growth of four medicinal plants. Iranian J. Crop Res. 12 (1): 64-53. (In Persian)
Kaur, H, and N. Gupta. 2018. Ameliorative effect of proline and ascorbic acid on seed germination and vigour parameters of tomato (Solanum lycopersicum L.) under salt stress. Int. J. Curr. Microbiol. Appl. 7(1): 3523-3532.
Lan, C.Y., K.H. Lin, W.D. Huang, and C.C. Chen .2019. Protective effects of selenium on wheat seedlings under salt stress. Agron. 9(6): 1-11.
Lapaz, A.M., L.F.M. Santos, C.H.P. Yoshida, R. Heinrichs, M. Campos, and A.R. Reis. 2019. Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia. 78(4): 498-508.
Maguire, I.D. 1982. Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 22: 176–177.
Mata-Ramírez, D., S.O. Serna-Saldívar, and M. Antunes-Ricardo. 2019. Enhancement of anti-inflammatory and antioxidant metabolites in soybean (Glycine max) calluses subjected to selenium or UV-light stresses. Sci. Hortic. 257 (13): 1-24.
Matthews, S., and M. Khajeh-Hosseini. 2007. Length of the lag period of germination and metabolic repair explain vigor differences in seed lots of maize (Zea mays). Seed Sci. Technol. 35: 200–212.
Moradian, Z., H. Omidi, T. Karimi, F. AzadBakht, and C.M. Bazmakani. 2015. The effect of hormonal pretreatment on germination and seedling growth indices of Lallemantia iberica under drought stress. J. Seed Res. 7(23): 21-29. (In Persian)
Nemat Alla, M.M., E.G. Badran, F.A. Mohammed, M. Nemat, N.M. Hassan, and M.A. Abdelhamid. 2020. Overexpression of Na+-manipulating genes in wheat by selenium is associated with antioxidant enforcement for enhancement of salinity tolerance. Rend. Lincei. Scienze Fisiche e Naturali. 31: 177–187.
Rabieyan, E., M. Jiriaie, and A. Ayneband. 2014. Evaluation of Selenium’s influence on diminishing the negative effects of salinity and low seed storage in rice germination. Env. Stresses Crop Sci. 7(1): 53-63. (In Persian)
Saleem, M.F., M.A. Kamal, M. Shahid, A. Saleem, A. Shakeel, and S.A. Anjum. 2020. Exogenous selenium-instigated physiochemical transformations impart terminal heat tolerance in Bt cotton. J. Plant Nutr. Soil Sci. 20: 274–283.
Saleem, N., K. Msaada, W. Dhifi, F. Limam, and B. Marzouk. 2014. Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta Physiol. Plant. 36: 433-445.
Shekari, F., A. Abbasi, and S.H. Mustafavi. 2017. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J. Saudi Soc. Agric. Sci. 16: 367-374.
Silva, D.F., P.E. Cipriano, R.R. Souza, M.S. Júnior, R.F. Silva, V. Faquin, M.L.S. Silva, and L.R.G. Guilherme. 2020. Anatomical and physiological characteristics of Raphanus sativus L. submitted to different selenium sources and forms application. Sci. Hortic. 260 (25): 1-21.
Vashisth, A., and S. Nagarajan. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol. 167: 149–156.
Wani, A.S., I. Tahir, S.S. Ahmad, R.A. Dar, and S. Nisar. 2017. Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci. Hortic. 225: 48-55.
Zaferanieh, M., B. Mahdavi, and B. Torabi. 2020. Effect of temperature and water potential on Alyssum homolocarpum seed germination: Quantification of the cardinal temperatures and using hydro thermal time. S. Afr. J. Bot. 131: 259-266.
Zeid, I.M., F.A.E.L. Gharib, S.M. Ghazi, and E.Z. Ahmed. 2019. Promotive Effect of Ascorbic Acid, Gallic Acid, Selenium and Nano-Selenium on Seed Germination, Seedling Growth and Some Hydrolytic Enzymes Activity of Cowpea (Vigna unguiculata) Seedling. J. Plant Physiol. 7(1): 1-8.