اثر سطوح مختلف نانوذرات نقره، اسیدهیومیک و تنش خشکی بر جوانه‌زنی بذر و برخی ویژگی‌های مورفوفیزیولوژیک دانه‌رست کینوا رقم Titicaca

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اســتادیار، گــروه مهندســی تولیــد و ژنتیــک گیاهــی، دانشــکده علــوم و مهندســی کشــاورزی، دانشــگاه رازی، کرمانشــاه، ایــران

2 گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

3 دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این پژوهش اثر نانوذرات نقره و اسیدهیومیک بر برخی ویژگی‌های مرفولوژیک دانه‌رست کینوا تحت تنش خشکی مورد بررسی قرار گرفت. آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. آزمایش شامل سه سطح نانوذره نقره (صفر، 10 و 20 میلی‌گرم بر لیتر نانونقره)، سه سطح اسیدهیومیک (صفر، 100 و 300 میلی‌گرم بر لیتر) و سه سطح تنش خشکی (صفر، 6- و 12- بار) بود. بیشترین میزان بنیه‌ی بذر و سرعت جوانه‌زنی بذر در بالاترین سطح نانوذره نقره و اسیدهیومیک مشاهده گردید که نشان‌دهنده‌ی تأثیر مثبت نانوذره نقره و اسیدهیومیک بر درصد جوانه‌زنی، سرعت جوانه‌زنی و بنیه‌ی بذر کینوا است. با توجه به نتایج به‌دست آمده برخلاف نانوذرات نقره و اسیدهیومیک تنش خشکی منجربه کاهش درصد جوانه‌زنی و خصوصیات رشدی دانه‌رست کینوا شد.کاهش جذب آب توسط بذر در شرایط تنش خشکی سبب کاهش فرایندهای فیزیولوژیکی و متابولیکی بذر می‌شود. نانوذرات می‌توانند به دیواره سلولی نفوذ کنند و منافذ جدیدی را برای نفوذ آب در پوسته بذر ایجاد کنند و به این ترتیب سرعت جوانه‌زنی را افزایش دهند. با افزایش غلظت نانوذرات نقره و اسیدهیومیک میزان پرولین، قندهای محلول، فنل کل، فلاونوئید و فعالیت آنزیم کاتالاز تحت شرایط تنش خشکی افزایش نشان داد که بیانگر نقش مثبت نانوذرات نقره و اسیدهیومیک برای افزایش تحمل به خشکی در گیاه کینوا است. در نتیجه کاربرد اسیدهیومیک در غلظت 300 میلی‌گرم بر لیتر همراه با 20 میلی‌گرم بر لیتر نانوذرات نقره برای بهبود جوانه‌رنی و رشد دانه‌رست کینوا تحت شرایط تنش خشکی توصیه می‌شود.

کلیدواژه‌ها


Abbasi Khalaki, M., M. Moameri, B. Asgari Lajayer, and T. Astatkie. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul. 93(1): 13–28.
Abdul-Baki, A.A, and J.D, Anderson. 1973. Vigor Determination in Soybean Seed by Multiple Criteria. Crop Sci. 13(6): 630-633.
Adam Y.A.A., M.E.H. Ibrahim, G. Zhou, G. Zhu, A.M.I. Elsiddig, M.S.E. Suliman, S.B.M. Elradi, and E.G.I. Salah. 2022. Interactive Impacts of Soil Salinity and Jasmonic Acid and Humic Acid on Growth Parameters, Forage Yield and Photosynthesis Parameters of Sorghum Plants. S. Afr. J. Bot. 146(1): 293-303.
Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105(1): 121-126.
Akhtar, N., and N. Ilyas. 2022. Role of nanosilicab to boost the activities of metabolites in Triticum aestivum facing drought stress. Plant and Soil. Doi: 10.1007/s11104-021-05285-1.
Altaf, M.A., R. Shahid, M.X. Ren, S. Naz, M.M. Altaf, L.U. Khan, R.K. Tiwari, M.K. Lal, M.A. Shahid, R. Kumar, M.A. Nawaz, M.S. Jahan, B.L. Jan, and P. Ahmad. 2022. Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System. Antioxidants. 11(2): 1-16.
Arslan, E. G., Agar, and M. Aydin. 2021. Humic Acid as a Biostimulant in Improving Drought Tolerance in Wheat: The Expression Patterns of Drought-Related Genes. Plant Mol. Biol. Rep. 39(10): 508–519.
Azadbakht, F., M. Amini Dehagh, and Kh. Ahmadi.  2018. Effect of Humic Acid and Folic Acid on Seed Germination Properties of Echinacea Purpurea under Salt Stress Conditions. Iran. J. Seed Res. 8(28): 33-43.
Bai, Y., S. Xiao, Z. Zhang, Y. Zhang, H. Sun, K. Zhang, X. Wang, Z. Bai, C. Li, and L. Liu. 2020. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. Peer J. 8(1): 1-29.
Banan, A., M.R. Kalbassi, M. Bahmani, E. Sotoudeh, S.A. Johari, M.A. Jonathan, and A.S. Kolok. 2020. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). Environ. Sci. Pollut. Res. 27(10): 10671–10678.
Bates, L.S., R.P. Waldern, and I.D. Teave. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39(1): 205-207.
Bayat, H., F. Shafie, M.A. Aminifard, and S. Daghighi. 2021. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. 279(1): 1-12.
Bayati, P., H. Karimmojeni, J. Razmjoo, M. Pucci, G. Abate, T.C. Baldwin, and A. Mastinu. 2022. Physiological, Biochemical, and Agronomic Trait Responses of Nigella sativa Genotypes to Water Stress. Sci. Hortic. 8(3): 1-18.
Bayramzadeh, V., E. Mortazavi, M.H. Davoodi, Sh. Kheiri, and S.Kh. Hossein Ashrafi. 2018.  The durability of negative effects of silver nanoparticles on seed germination and growth characteristics of Scots pine (Pinus sylvestris L.) in soil. Iranian J. Forest Poplar Res. 26(1): 1-11. (In Persian)
Chen, D., Zw. Meng, and Yp. Chen. 2021. Effect of humic acid on seedling growth and trace metal accumulation of pak choi (Brassica chinensis L.) cultivated on molybdenum slag-spiked soil. Environ. Sci. Pollut. Res. 28(5): 6122–6131.
Chen, Q., Z. Qua, G. Ma, W. Wanga, J. Daia, M. Zhanga, Z. Weib, and Z. Liua. 2022. Humic acid modulates growth, photosynthesis, and hormone and osmolytes system of maize under drought conditions. Agric. Water Manag. 263. Doi: 10.1016/j.agwat.2021.107447.
Dashab, S., and H. Omidi. 2021. Effects of hydro- and bio-priming on some physiological and biochemical characteristics of quinoa (Chenopodium quinoa) seedlings under drought stress. Iran. J. Plant Physiol. 11(3): 3659-3670.
Ebrahimi, M., and E. Miri Karbasak. 2016. Investigation effect of humic acid on germination, seedling growth and Photosynthesis pigments of medicinal plant Isabgol (Plantago ovata Forssk).  Iran. J. Seed Res. 3(3): 35-46.
Fathi, Z., R.A. Khavari Nejad, H. Mahmoodzadeh, and T. Nejad Satari. 2017. Investigating of a wide Range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J. Plant Prod. Sci. 57(3): 228-236.
Gad, M., H. Chao, H. Li, W. Zhao, G. Lu, and M. Li. 2021. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. Front. Plant Sci. 11(1): 1-10.
Ghani, M.I., S. Saleem, S.A. Rather, M.S. Rehmani, S. Alamri, V.D. Rajput, H.M. Kalaji, N. Saleem, T.A. Sial, and M. Liu. 2022. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere. 289(1): 1-12.
Ghavam. M. 2019. Effect of silver nanoparticles on tolerance to drought stress in Thymus daenensis Celak and Thymus vulgaris L. in germination and early growth stages. Environ. Stresses Crop Sci. 12(2): 555-556. (In Persian, with English Abstract)
Gholami, Sh., M, Amini Dehaghi, and A.R, Rezazadeh. 2022. Effect of different concentrations of selenium on germination characteristics and proline content of quinoa (Chenopodium quinoa willd) under drought stress. Environ. Stresses Crop Sci. 14(4): 1029-1040. (In Persian, with English Abstract)
Han, Y., Z. Hou, X. Zhang, K. Yan, Z. Liang, and Q He. 2022. Important changes in germination, seedling tolerance, and active components content due to drought stress on three licorice (Glycyrrhiza) species. Ind. Crops Prod. 175(1): 1-11.
Hunter, E.A., C.A. Glasbey, and R.E.L. Naylor. 1984. The analysis of data from germination tests. J. Agric. Sci. 102(1): 207-213.
Irigoyen, J.J., D.W. Emerich, and M. Sanchez-Diaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 84(1): 55-60.
Karimi Afshar, A., A. Baghizadeh, and Gh. Mohammadi-Nejad. 2021. Screening of Iranian Cumin (Cuminum cyminum L.) Ecotypes under Normal Moisture and Drought Conditions using Tolerance Indices. J. Ethno-Pharmaceutical Prod. 2(1):17-22.
Krizek, D.T., G.F. Kramer, A. Upadhyaya, and R.M. Mirecki. 1993. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiol. Plant. 88(2): 350-358.
Li, H., H. Yue, J. Xie, J. Bu, L. Li, X. Xin, Y. Zhao, H. Zhang, L. Yang, J. Wang, and X. Jiang. 2021. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Sci. Rep. 11(1): 1-17.
Liopa-Tsakalidi, A., G. Kaspiris, G. Salahas, and P. Barouchas. 2012. Effect of salicylic acid (SA) and gibberellic acid (GA3) pre-soaking on seed germination of stevia (Stevia rebaudiana) under salt stress. J. Med. Plant Res. 6(3): 416-423.
Manaa, A., R. Goussi, W. Derbali, S. Cantamess, J. Essemin, and R. Barbato. 2021. Photosynthetic performance of quinoa (Chenopodium quinoa Willd.) after exposure to a gradual drought stress followed by a recovery period. Biochim. Biophys. Acta - Bioenerg. 1862(5): 1-13.
Meda, A., C.E. Lamien, M. Romito, J. Millogo, and O.G. Nacoulma. 2005. Determination of the total phenolic, flavonoid and pralin contents in Burkina Fasan honey, as well as their scavenging activity. Food Chem. 91(3): 571-577.
Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon. 7(2): 1-11.
Nejatzadeh, F. 2021. Effect of silver nanoparticles on salt tolerance of Satureja hortensis l. during in vitro and in vivo germination tests. Heliyon. 7(2): 1-11.
Nguyen, D.T.C., H.T.N. Le, T.T. Nguyen, T.T.T. Nguyen, L.G. Bach, T.D. Nguyen, and T.V. Tran. 2021. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J. Hazard. Mater. 420(1): 1-16.
Pagter, M., C. Bragato, M. Malagoli, and H.J. Brix. 2009. Osmotic and ionic effects of NaCl and Na2So4 salinity on Phragmites australis. Aquat. Bot. 90(1): 43-51.
Parveen, A., and S. Rao. 2015. Effect of Nanosilver on Seed Germination and Seedling Growth in Pennisetum glaucum. J. Clust. Sci. 26(3): 693–701.
Ranal, M.A, and D.G. Santana. 2006. How and Why to Measure the Germination Process? Rev. Bras. Bot. 29(1): 1-11.
Rao, S., and G.S. Shekhawat. 2016. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech. 6(2): 1-12. DoI: 10.1007/s13205-016-0550-3.
Sales, E., E. Cañizares, C. Pereira, M.A. Pérez-Oliver, S.G. Nebauer, I. Pavlović, O. Novák, J. Segura, and I. Arrillaga. 2022. Changing Temperature Conditions during Somatic Embryo Maturation Result in Pinus pinaster Plants with Altered Response to Heat Stress. Int. J. Mol. Sci. 23(3): 1-16.
Savassa, S.M., H. Castillo-Michel, A.E. Pradas Del Real, J. Reyes-Herrera, J.P.R. Marques, and H.W.P. Carvalho. 2021. Ag nanoparticles enhancing Phaseolus vulgaris seedling development: understanding nanoparticle migration and chemical transformation across the seed coat. Environ. Sci. Nano. 8(7): 493-501.
Shaltout, K., M. Motawee, D. Ahmed, and M. EL- Etreby. 2022. Effect of Foliar Spray with K and Mn on the Growth of Swietenia mahagoni (L.) Jacq. Under Different Drought Levels. J. Bas. Environ.Sci. 9(1): 1- 11
Shen, J., MJ. Guo, Y.G. Wang, X.Y. Yuan, Y.Y. Wen, X.E. Song, S.Q. Dong, and P.Y. Guo. 2020. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav. 15(8): 1-13.
Shi, P., and M. GU. 2020. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response salt stress. BMC Plant Biol. 20(1): 1-15.
Yañez-Yazlle, M.F., N. Romano-Armada, M.M. Acrechede, V.B. Rajal, and V.P. Irazusta. 2021. Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicol. Environ. Saf. 218(1): 1-11.
Yigider, E., M. Taspinar, M. Aydin, and G. Agar. 2021. Humic acid effects on retrotransposon polymorphisms caused by zinc and iron in the maize (Zea mays L.) genome. Cereal Res. Commun. 49(2): 193–198.
Zhou, X., X. Jia, Zh. Zhang, K. Chen, L. Wang, H. Chen, Z. Yang, Ch. Li, and L. Zhao. 2022. AgNPs seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage AXiaoding. Sci. Total Environ. 808(1): 1-16.