Adam, N. R., Dierig, D. A., Coffelt, T. A., Wintermeyer, M. J., Mackey, B. E., & Wall, G. W. (2007). Cardinal temperatures for germination and early growth of two Lesquerella species.
Industrial Crops and Products, 25(1), 24-33.
https://doi.org/10.1016/j.indcrop.2006.06.001
Ahmadvand, B., & Moosavi, S. A. (2022). Quantification of temperature effect on seed germination of buckwheat (Fagopyrum esculentum Möench). In Proceedings of the 3rd International and 17th National Iranian Crop Science Congress (n.p.). Shahid-Bahonar University of Kerman, Iran. [In Persian]
Ambika, S., Manonmani, V., & Somasundaram, G. (2014). Review on effect of seed size on seedling vigor and seed yield.
Research Journal of Seed Science, 7(2), 31-38.
https://doi.org/10.3923/rjss.2014.31.38
Babu, S., Yadav, G. S., Singh, R., Avasthe, R. K., Das, A., Mohapatra, K. P., & Prakash, N. (2018). Production technology and multifarious uses of buckwheat (Fagopyrum spp.): A review. Indian Journal of Agronomy, 63(4), 415-427.
Chacón, P. A. U. L. I. N. A., Bustamante, R. A. M. I. R. O., & Henríquez, C. A. R. O. L. I. N. A. (1998). The effect of seed size on germination and seedling growth of Cryptocarya alba (Lauraceae) in Chile. Revista Chilena de Historia Natural, 71(2), 189-197.
Childiyal, S. K., Sharma, C. M., & Gairola, S. (2009). Environmental variation in seed and seedling characteristics of
Pinus roxburghii Sarg. from Uttaranchal, India.
Applied Ecology and Environmental Research, 7(2), 121-129.
https://doi.org/10.15666/aeer/0702_121129
Habibzadeh Zarandi, M., Allahdadi, I., Khalaj, H., & Labbafi, M. (2017). Application of nonlinear regression models for prediction of cardinal temperatures in seed germination of various cumin (
Cuminum cyminum) ecotypes.
Iranian Journal of Seed Science and Technology, 6(1), 79-88.
https://doi.org/10.22034/ijsst.2017.113217 [In Persian]
Hashemi, A., Sharifzadeh, F., Maali Amiri, R., & Tavakkol Afshari, R. (2020). Evaluation of germination of safflower seed (
Carthamus tinctorius L.) Faraman cultivar under water deficit stress and determination of cardinal germination temperatures.
Iranian Journal of Seed Science and Technology, 9(3), 73-83.
https://doi.org/10.22034/ijsst.2020.128718.1315 [In Persian]
Hashemi, A., Tavakkol Afshari, R., Tabrizi, L., & Barooti, S. (2022). Quantifying seed germination response of
Plantago ovata under temperature and drought stress regimes.
Iranian Journal of Seed Science and Technology, 11(2), 33-42.
https://doi.org/10.22092/ijsst.2020.107995.1006. [In Persian]
Li, R., Chen, L., Wu, Y., Zhang, R., Baskin, C. C., Baskin, J. M., & Hu, X. (2017). Effects of cultivar and maternal environment on seed quality in
Vicia sativa.
Frontiers in Plant Science, 8, Article 1411.
https://doi.org/10.3389/fpls.2017.01411
Mamedi, A., Sharifzadeh, F., & Maali Amiri, R. (2021). Evaluation of quinoa seed germination variability in response to temperature, drought, and salinity stresses.
Iranian Journal of Seed Science and Technology, 10(4), 57–67.
https://doi.org/10.22092/ijsst.2021.353918.1388 [In Persian]
Moosavi, S. A., Siadat, S. A., Koochekzadeh, A., Parmoon, G., & Kiani, S. (2022). Effect of seed color and size on cardinal temperatures of castor bean (
Ricinus communis L.) seed germination.
Agrotechnique in Industrial Crops, 2(1), 1–10.
https://doi.org/10.22126/atic.2022.7417.1041
Mwale, S. S., Azam-Ali, S. N., Clark, J. A., Bradley, R. G., & Chatha, M. R. (1994). Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Science and Technology, 22, 565–571.
Ordoñez-Salanueva, C. A., Seal, C. E., Pritchard, H. W., Orozco-Segovia, A., Canales-Martínez, M., & Flores-Ortiz, C. M. (2015). Cardinal temperatures and thermal time in
Polaskia (Cactaceae) species: Effect of projected soil temperature increase and nurse interaction on germination timing.
Journal of Arid Environments, 115, 73–80.
https://doi.org/10.1016/j.jaridenv.2015.01.006
Sampayo-Maldonado, S., Ordoñez-Salanueva, C. A., Mattana, E., Ulian, T., Way, M., Castillo-Lorenzo, E., & Flores-Ortíz, C. M. (2019). Thermal time and cardinal temperatures for germination of
Cedrela odorata L.
Forests, 10(10), 841.
https://doi.org/10.3390/f10100841
Shahi, C., Vibhuti, K. B., & Bargali, S. S. (2015). How seed size and water stress affect seed germination and seedling growth in wheat varieties.
Current Agriculture Research Journal, 3(1), 60–68.
https://doi.org/10.12944/CARJ.3.1.08
Siadat, S. A., Moosavi, S. A., Parmoon, G., & Kiani, S. (2021). Study on the relationship between seed size and aging on cardinal temperatures of canola.
Iranian Journal of Seed Science and Technology, 10(4), 119–135.
https://doi.org/10.22092/ijsst.2020.351193.1352 [In Persian]
Steiner, F., Zuffo, A. M., Busch, A., de Oliveira Sousa, T., & Zoz, T. (2019). Does seed size affect the germination rate and seedling growth of peanuts under salinity and water stress?
Pesquisa Agropecuária Tropical, 49, 1–9.
https://doi.org/10.1590/1983-40632019v4954353
Tang, Y., Ding, M. Q., Tang, Y. X., Wu, Y. M., Shao, J. R., & Zhou, M. L. (2016). Germplasm resources of buckwheat in China. In M. Zhou, S.-H. Woo, & G. Wieslander (Eds.),
Molecular breeding and nutritional aspects of buckwheat (pp. 13–20). Academic Press.
https://doi.org/10.1016/B978-0-12-803692-1.00002-X
Yan, W., & Hunt, L. A. (1999). An equation for modeling the temperature response of plants using only the cardinal temperatures.
Annals of Botany, 84(5), 607–614.
https://doi.org/10.1006/anbo.1999.0955
Yin, X., Kropff, M. J., McLaren, G., & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature.
Agricultural and Forest Meteorology, 77(1-2), 1–16.
https://doi.org/10.1016/0168-1923(95)02236-Q
Zare, A., Malekpoor, M., & Arabizadeh, M. (2021). Determining cardinal temperature for seed germination of four weeds in the Brassicaceae family.
Journal of Crop Improvement, 23(2), 417–428.
https://doi.org/10.22059/jci.2021.301607.2387 [In Persian]