نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی فوق دکترا، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.

3 پژوهشگر، گروه گیاهان دارویی، موسسه آموزش عالی جهاد دانشگاهی کرمانشاه،کرمانشاه، ایران.

چکیده

کاربرد نانوذرات جهت پرایمینگ بذر در مقایسه با فرم‌های بالک ممکن است سبب بهبود جوانه‌زنی و رشد گیاهچه شود. بنابراین این تحقیق به منظور بررسی اثر پرایمینگ بذر (با اکسید آهن بالک، نانوذره 100-1 نانومتر و 60-40 نانومتر در غلظت‌های صفر، 2، 4 و 8 گرم در لیتر، آب و عدم پرایمینگ) در سطوح مختلف تنش خشکی (شامل عدم تنش، 2-، 4- و 8- بار) با استفاده از پلی‌اتلین‌گلایکول 6000 بر خصوصیات جوانه‌زنی و رشد گیاهچه نخود رقم عادل انجام شد. این آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی و در سه تکرار در دانشگاه رازی انجام شد. نتایج نشان دادند تنش خشکی 8- بار سبب توقف کامل جوانه‌زنی شد. تنش خشکی 4- بار پس از 8- بار سبب کاهش معنی‌دار و بیش‌تر درصد، سرعت و بنیه طولی جوانه‌زنی به ترتیب با 96، 93 و 40 درصد و افزایش 130 درصدی نسبت طول ریشه‌چه به ساقه‌چه در مقایسه با تیمار شاهد شد. تیمارهای پرایمینگ بذر بیش‌ترین اثر مثبت و معنی‌دار را بر سرعت و بنیه‌ جوانه‌زنی در عدم تنش خشکی و بر درصد جوانه‌زنی در تنش خشکی داشتند. بیش‌ترین بنیه طولی و وزنی گیاهچه در تیمار پرایمینگ بذر با آهن نانوذره 60-40 نانومتر در غلظت 8 گرم در لیتر حاصل شد. به نظر می‌رسد تیمارهای پرایمینگ بذر در شرایط عدم تنش خشکی با بهبود بنیه و سرعت جوانه‌زنی و در تنش خشکی با بهبود درصد جوانه‌زنی، کیفیت جوانه‌زنی بذر را افزایش دادند. پرایمینگ بذر با آهن نانوذره 60-40 نانومتر از دیگر تیمارهای پرایمینگ بذر برتر بود.

کلیدواژه‌ها

Abdul-Baki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13(2), 227-232. https://doi.org/10.2135/cropsci1973.0011183x00130002
Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10, 5037. https://doi.org/10.1038/s41598-020-61696-7
Afzal, S., Sharma, D., & Singh, N. K. (2021). Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agents for boosting seed germination in rice (Oryza sativa L.). Environmental Science and Pollution Research, 28, 40275-40287. https://doi.org/10.1007/s11356-020-12056-5 
Ahmadpour, R., Bachari, Y., & Hosseinzadeh, S. R. (2022). The role of compost tea in mitigating the negative effects of drought stress caused by polyethyleneglycol in chickpea seeds (Adel cultivar) by evaluating germination indices. Iranian Journal of Pulses Research, 13(2), 37-49. https://doi.org/10.22067/IJPR.V13I2.2204-1030 [In Persian]
Alam, M. U., Fujita, M., Nahar, K., Rahman, A., Anee, T. I., Masud, A. A. C., Amin, A. R., & Hasanuzzaman, M. (2022). Seed priming upregulates antioxidant defense and glyoxalase systems to confer simulated drought tolerance in wheat seedlings. Plant Stress, 6, 100120. https://doi.org/10.1016/j.stress.2022.100120
Alen, S. G., Dobrenz, A. K., Schonhorst, M. H., & Stoner, J. E. (1985). Heritability of NaCl tolerance in germination of alfalfa seed. Journal of Agronomy, 77, 99-101.https://doi.org/10.2134/agronj1985.00021962007700010023x
Alias, N. S. B., Billa, L., Muhammad, A., & Singh, A. (2018). Priming and temperature effects on germination and early seedling growth of some Brassica spp. Acta Horticulturae, 1225, 407–414. https://doi.org/10.17660/ActaHortic.2018.1225.57
Amir, M., Prasad, D., Khan, F. A., Khan, A., & Ahmad, B. (2024). Seed priming: An overview of techniques, mechanisms, and applications. Plant Science Today, 11(1), 553-563. https://doi.org/10.14719/pst.2828
Amirmoradi, S., & Feizi, H. (2017). Can mean germination time predict seed vigor of canola (Brassica napus L.) seed lots? Acta Agrobotanica, 70(4), 1729. https://doi.org/10.5586/aa.1729
An, J., Hu, P., Li, F., Wu, H., Shen, Y., White, J. C., Tian, X., Li, Z., & Giraldo, J. P. (2020). Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 7, 2214–2228. https://doi.org/10.1039/d0en00387e
Association of Official Seed Analysts (AOSA). (1993). AOSA rules for testing seeds 2023 complete set volumes 1-4https://analyzeseeds.com/product/aosa-rules-for-testing-seeds-2023-complete-set-volumes-1-4/
Biju, S., Fuentes, S., & Gupta, D. (2017). Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes, and antioxidant defense system. Plant Physiology and Biochemistry, 119, 250-264. https://doi.org/10.1016/j.plaphy.2017.09.001
Bruggink, G. T., Ooms, J. J. J., & Van der Toorn, P. (1999). Induction of longevity in primed seeds. Seed Science Research, 9(1), 49-53. https://doi.org/10.1017/S0960258599000057
Coussement, J. R., Villers, S. L., Nelissen, H., Inzé, D., & Steppe, K. (2021). Turgor-time controls grass leaf elongation rate and duration under drought stress. Plant, Cell & Environment, 44(5), 1361-1378. https://doi.org/10.1111/pce.13989
Długosz, O., Matysik, J., Matyjasik, W., & Banach, M. (2021). Catalytic and antimicrobial properties of α-amylase immobilised on the surface of metal oxide nanoparticles. Journal of Cluster Science, 32, 1609-1622. https://doi.org/10.1007/s10876-020-01921-5
Gough, R. E. (2020). Seed quality: Basic mechanisms and agricultural implications (pp. 119-152). CRC Press. https://doi.org/10.1201/9781003075226
Ellis, R. H. (2022). Seed ageing, survival, and the improved seed viability equation: Forty years on. Seed Science and Technology, 50(Suppl. 1), 1-20. https://doi.org/10.15258/sst.2022.50.1.s.01
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147. https://doi.org/10.3389/fpls.2017.01147
Farooq, M., Hussain, M., Imran, M., Ahmad, I., Atif, M., & Alghamdi, S. S. (2019). Improving the productivity and profitability of late sown chickpea by seed priming. International Journal of Plant Production, 13, 129-139. https://doi.org/10.1007/s42106-019-00041-z
Ganjeali, A., Parsa, M., & Khatib, M. (2008). Quantifying seed germination response of chickpea genotypes (Cicer arietinum L.) influenced by temperature and drought stress regimes. Agricultural Research, 9(1), 77-88. [In Persian]
Ghorbani, R., Movafeghi, A., Ganjeali, A., & Nabati, J. (2022). Investigating the germination characteristics of chickpea (Cicer arietinum) in response to titanium dioxide nanoparticles priming and drought stress. Iranian Journal of Seed and Research, 9(1), 189-202. https://doi.org/10.52547/yujs.9.1.189 [In Persian]
Hamidi, A., Daneshian, J., & Asgharzadeh, A. (2016). A review of drought stress on mother plant effect on soybean seed germination and vigor improvement by some beneficial soil microorganisms’ treatment assessment. Iranian Journal of Seed Science Research, 3(2), 109-124. https://doi.org/20.1001.1.24763780.1395.3.2.10.6 [In Persian]
Hasanuzzaman, M., Nahar, K., Hossain, M. S., Mahmud, J. A., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Sciences, 18(1), 200. https://doi.org/10.3390/ijms18010200
Himaja, R., Radhika, K., Reddy, K. B., & Raghavendra, M. (2023). Screening of chickpea (Cicer arietinum L.) genotypes for germination and early seedling growth under PEG 6000 induced drought stress. Legume Research: An International Journal, 46(7), 813-821. https://doi.org/10.18805/LR-4183
Hosseini, P., Mohsenifar, K., Rajaie, M., & Babaeinezhad, T. (2020). Improvement and regeneration of canola seeds (Brassica napus) with growth promoting compounds under different irrigation intervals. Iranian Journal of Seed Science and Research, 7, 463-475. https://doi.org/10.22124/JMS.2020.4643 [In Persian]
Hussain, M., Farooq, M., & Lee, D. J. (2017). Evaluating the role of seed priming in improving drought tolerance of pigmented and non-pigmented rice. Journal of Agronomy and Crop Science, 203(4), 269-276. https://doi.org/10.1111/jac.12195
International Seed Testing Association (ISTA). (2003). Handbook for seedling evaluation (3rd ed.). International Seed Testing Association.
International Seed Testing Association (ISTA). (2006). International rules for seed testing. Basserdorf, Switzerland.
Jahantigh, T., Esmaeilzadeh Bahabadi, S., Razmara, Z., & Hasanein, P. (2023). The effect of seed priming with three metallic complexes of iron and its Fe3O4 nanoparticles resulting from its thermal decomposition on some growth physiologic parameters of Triticum aestivum. Journal of Plant Process and Function, 12(53), 315-33. [In Persian]
Jisha, K. C., & Puthur, J. T. (2018). Seed hydropriming enhances osmotic stress tolerance potential in Vigna radiata. Agricultural Research, 7, 145-151. https://doi.org/10.1007/s40003-018-0306-x
Kharb, V., Sharma, V., Dhaliwal, S. S., & Kalia, A. (2023). Influence of iron seed priming on seed germination, growth, and iron content in rice seedlings. Journal of Plant Nutrition, 46(16), 4054-4062. https://doi.org/10.1080/01904167.2023.2220731
Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., Pan, S., Tian, H., & Mo, Z. (2021). ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19, 1-19. https://doi.org/10.1186/s12951-021-00820-9
Ma, Y., Liao, K., Zhu, Y., Lu, X., Wang, K., & Zhang, X. R. (2024). Effects of drought stress on seed germination and early seedling growth in Ferula ferulaeoides (Steud.) Korov. Brazilian Journal of Botany, 47(3), 857-863. https://doi.org/10.1007/s40415-023-00975-9
Maguire, J. D. (1962). Speed of germination: Aids in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 8263. https://doi.org/10.1038/s41598-017-08669-5
Manzoor, N., Ali, L., Al-Huqail, A. A., Alghanem, S. M. S., Al-Haithloul, H. A. S., Abbas, T., Chen, G., Huan, L., Liu, Y., & Wang, G. (2023). Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 264, 115382. https://doi.org/10.1016/j.ecoenv.2023.115382
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21), 8258. https://doi.org/10.3390/ijms21218258
Mašková, T., & Herben, T. (2018). Root: shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution, 8(14), 7143-7150. https://doi.org/10.1002/ece3.4238
Masomi, S. H., Imani, A., Seyfzade, S., & Zakerin, H. R. (2023). Effect of drought-induced stress by PEG6000 on physiological and morphological traits of chickpea (Cicer arietinum L.) seed germination: Assortment of drought tolerant cultivars. Journal of Plant Process and Function, 11(52), 1-12. [In Persian]
Mazhar, M. W., Ishtiaq, M., Maqbool, M., Ullah, F., Sayed, S. R., & Mahmoud, E. A. (2023). Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. South African Journal of Botany, 162, 577-587. https://doi.org/10.1016/j.sajb.2023.09.047
Mehmood, S., Khatoon, Z., Amna, Ahmad, I., Muneer, M. A., Kamran, M. A., Ali, J., Ali, B., Chaudhary, H. J., & Munis, M. F. H. (2023). Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Archives of Agronomy and Soil Science, 69(2), 197-211. https://doi.org/10.1080/03650340.2022.2078321
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. https://doi.org/10.1104/pp.51.5.914
Monajjem, S., Soltani, E., Zainali, E., Esfahani, M., Ghaderi-Far, F., Chaleshtori, M. H., & Rezaei, A. (2023). Seed priming improves enzymatic and biochemical performances of rice during seed germination under low and high temperatures. Rice Science, 30(4), 335-347. https://doi.org/10.1016/j.rsci.2023.03.012
Moreno, C., Seal, C. E., & Papenbrock, J. (2018). Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. Journal of Agronomy and Crop Science, 204(1), 40-48. https://doi.org/10.1111/jac.12242
Nie, L., Song, S., Yin, Q., Zhao, T., Liu, H., He, A., & Wang, W. (2022). Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated α-amylase expression. Rice, 15(1), 19. https://doi.org/10.1186/s12284-022-00567-3
Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture: Recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8
Noor, R., Yasmin, H., Ilyas, N., Nosheen, A., Hassan, M. N., Mumtaz, S., Khan, N., Ahmad, A., & Ahmad, P. (2022). Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere, 292, 133201. https://doi.org/10.1016/j.chemosphere.2021.133201
Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., Paudel, H., & Bhandari, R. (2024). Drought stress effect, tolerance, and management in wheat: A review. Cogent Food & Agriculture, 10(1), 2296094. https://doi.org/10.1080/23311932.2023.2296094
Peters, W. S., Jensen, K. H., Stone, H. A., & Knoblauch, M. (2021). Plasmodesmata and the problems with size: Interpreting the confusion. Journal of Plant Physiology, 257, 153341. https://doi.org/10.1016/j.jplph.2020.153341
Pompelli, M. F., Jarma-Orozco, A., & Rodriguez-Páez, L. A. (2023). Imbibition and germination of seeds with economic and ecological interest: Physical and biochemical factors involved. Sustainability, 15(6), 5394. https://doi.org/10.3390/su15065394
Sadeghzadeh Ahari, D. (2016). Study on drought stress and seed size effects on germination and seedling characteristics of dryland chickpea genotypes. Iranian Dryland Agronomy Journal, 5(1), 19-30. https://doi.org/10.22092/idaj.2016.107100 [In Persian]
Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M. D., Gupta, N. K., Mehta, B. K., Kumar, P., Pandey, S., & Singhal, R. K. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress, 4, 100066. https://doi.org/10.1016/j.stress.2022.100066
Sarr, M. S., Seiler, J. R., & Sullivan, J. (2024). Effect of drought stress on the physiology and early growth of seven Senegalia (Acacia) senegal (L.) Britton provenances. New Forests, 55(5), 1145-1158. https://doi.org/10.1007/s11056-023-10027-5
Sazegari, S., Zinati, Z., & Tahmasebi, A. (2020). Dynamic transcriptomic analysis uncovers key genes and mechanisms involved in seed priming-induced tolerance to drought in barley. Gene Reports, 21, 100941. https://doi.org/10.1016/j.genrep.2020.100941
Scott, S. J., Jones, R. A., & Williams, W. (1984). Review of data analysis methods for seed germination. Crop Science, 24(6), 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
Singhal, R. K., Pandey, S., & Bose, B. (2021). Seed priming with Mg(NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress, 2, 100037. https://doi.org/10.1016/j.stress.2021.100037
Sleimi, N., Guerfali, S., & Bankaji, I. (2015). Biochemical indicators of salt stress in Plantago maritima: Implications for environmental stress assessment. Ecological Indicators, 48, 570-577. https://doi.org/10.1016/j.ecolind.2014.08.035
Sripathy, K. V., & Groot, S. P. (2023). Seed development and maturation. In Seed Science and Technology: Biology, Production, Quality (pp. 17-38). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5888-5_2
Srivastava, A. K., Suresh Kumar, J., & Suprasanna, P. (2021). Seed ‘primeomics’: Plants memorize their germination under stress. Biological Reviews, 96(5), 1723-1743. https://doi.org/10.1111/brv.12722
Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol-induced drought stress strongly influences seed germination, root morphology, and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. https://doi.org/10.1016/j.indcrop.2019.01.019
Tao, Q., Chen, D., Bai, M., Zhang, Y., Zhang, R., Chen, X., Sun, X., Niu, T., Nie, Y., Zhong, S., & Sun, J. (2023). Hydrotime model parameters estimate seed vigor and predict seedling emergence performance of Astragalus sinicus under various environmental conditions. Plants, 12(9), 1876. https://doi.org/10.3390/plants12091876
Vishwas, S., Chaurasia, A. K., Bara, B. M., Debnath, A., Parihar, N. N., Brunda, K., & Saxena, R. (2017). Effect of priming on germination and seedling establishment of chickpea (Cicer arietinum L.) seeds. Journal of Pharmacognosy and Phytochemistry, 6(4), 72-74.
Wijewardana, C., Reddy, K. R., Krutz, L. J., Gao, W., & Bellaloui, N. (2019). Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLOS ONE, 14(9), e0214977. https://doi.org/10.1371/journal.pone.0214977
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50. https://doi.org/10.3390/horticulturae7030050
Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J. A., Valdes, C., Medina-Velo, I. A., Turley, R. S., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering, 8(3), 1427-1436. https://doi.org/10.1021/acssuschemeng.9b05615