Al-Ashkar, I., Alderfasi, A., El-Hendawy, S., Al-Suhaibani, N., El-Kafafi, S., & Seleiman, M. F. (2019). Detecting salt tolerance in doubled haploid wheat lines.
Agronomy, 9(4), 211.
https://doi.org/10.3390/agronomy9040211
Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2020). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt-stressed
Vigna angularis.
Biomolecules, 10(1), 42.
https://doi.org/10.3390/biom10010042
Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., & Khan, L. U. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system.
Antioxidants, 11(2), 309.
https://doi.org/10.3390/antiox11020309
Arafa, S. A., Attia, K. A., Niedbała, G., Piekutowska, M., Alamery, S., Abdelaal, K., Alateeq, T. K., Ali, M., Elkelish, A., & Attallah, S. Y. (2021). Seed priming boosts adaptation in pea plants under drought stress.
Plants, 10(10), 2201.
https://doi.org/10.3390/plants10102201
Armand, N., Amiri, H., & Ismaili, A. (2015). Effect of methanol on germination characteristics of bean (
Phaseolus vulgaris L. cv. Sadry) under drought stress conditions.
Iranian Journal of Pulses Research, 6, 42–53.
https://doi.org/10.22067/IJPR.V1394I1.43942 [In Persian]
Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment: A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions.
Advances in Agronomy, 88, 223–271.
https://doi.org/10.1016/S0065-2113(05)88006-X
Azadbakht, M., & Balouchi, H. (2020). The effect of melatonin and hydropriming on some physiological characteristics of chickpea (
Cicer arietinum L.) seed and seedling under salinity stress.
Plant Process & Function, 9(35), 347–358.
https://doi.org/10.1001.1.23222727.1399.9.35.25.6 [In Persian]
Bahrasemani, S., Seyedi, A., Fathi, S. H., & Jowkar, M. (2024). The seed priming using putrescine improves germination indices and seedlings morphobiochemical responses of indigo (
Indigofera tinctoria) under salinity stress.
Journal of Medicinal Plants & By-Products, 13(1), 179–188.
https://doi.org/10.22034/JMPB.2023.128870
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies.
Plant Soil, 39, 205–207.
https://doi.org/10.1007/BF00018060
Batool, N., Ilyas, N., Noor, T., Saeed, M., Mazhar, R., Bibi, F., & Shahzad, A. (2014). Evaluation of drought stress effects on germination and seedling growth of
Zea mays L.
International Journal of Biosciences, 5, 203–209.
https://doi.org/10.12692/ijb/5.4.203-209
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy (3rd ed.).
Seed Science Research, 23(4), 289.
https://doi.org/10.1007/978-1-4614-4693-4
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.
Analytical Biochemistry, 72, 248–254.
https://doi.org/10.1016/0003-2697(76)90527-3
Chen, L., Liu, L., Lu, B., Ma, T., Jiang, D., Li, J., Zhang, K., Sun, H., Zhang, Y., & Bai, Z. (2020). Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (
Gossypium hirsutum L.).
PLoS ONE, 15, e0228241.
https://doi.org/10.1371/journal.pone.0228241
Coskun, D., Britto, D. T., Huynh, W. Q., & Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress.
Frontiers in Plant Science, 7, 1072.
https://doi.org/10.3389/fpls.2016.01072
Debez, A., Ben Slimen, I. D., Bousselmi, S., Atia, A., Farhat, N., El Kahoui, S., & Abdelly, C. (2020). Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude.
Plant Biosystems, 154(4), 544–552.
https://doi.org/10.1080/11263504.2019.1651777
Devika, O. S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., & Rakshit, A. (2021). Seed priming: A potential supplement in integrated resource management under fragile intensive ecosystems.
Frontiers in Sustainable Food Systems, 5, 654001.
https://doi.org/10.3389/fsufs.2021.654001
Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. (2012). High temperature tolerance in chickpea and its implications for plant improvement.
Crop & Pasture Science, 63(5), 419–428.
https://doi.org/10.1071/CP11218
Ding, F., Wang, R., & Chen, B. (2019). Effect of exogenous ammonium gluconate on growth, ion flux, and antioxidant enzymes of maize (
Zea mays L.) seedlings under NaCl stress.
Plant Biology, 21(4), 643–651.
https://doi.org/10.1111/plb.12963
Ebrahimi, O., Esmaili, M. M., Sabori, H., & Tahmasebi, A. (2013). Effects of salinity and drought stress on germination of two species of
Agropyron elongatum and
Agropyron desertorum.
Desert Ecosystem Engineering Journal, 1, 31–38.
http://deej.kashanu.ac.ir [In Persian]
El Mahi, H., Pérez-Hormaeche, J., De Luca, A., Villalta, I., Espartero, J., Gámez-Arjona, F., Fernández, J. L., Bundó, M., Mendoza, I., & Mieulet, D. (2019). A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice.
Plant Physiology, 180(2), 1046–1065.
https://doi.org/10.1104/pp.19.00324
Ellis, R. H., & Roberts, E. H. (1980). Seed physiology and seed quality in soybean. Advances in Legume Science, 287–311.
Eslami, V., Behdani, M. A., & Ali, S. (2009). Effect of salinity on germination and early seedling growth of canola cultivars.
Environmental Stresses in Agricultural Sciences, 1(1), 39–46.
https://doi.org/10.22077/escs.2009.5 [In Persian]
Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change.
Current Opinion in Environmental Sustainability, 50, 310–318.
https://doi.org/10.1016/j.cosust.2020.10.015
Farooq, M., Basra, S. M. A., & Khan, M. B. (2007). Seed priming improves growth of nursery seedlings and yield of transplanted rice.
Archives of Agronomy and Soil Science, 53(3), 315–326.
https://doi.org/10.1080/03650340701226166
Ghanbari, M., Mokhtassi-Bidgoli, A., Talebi-Siah Saran, P., & Pirani, H. (2019). Effect of deterioration on germination and enzyme activity in dry bean (
Phaseolus vulgaris L.) under salinity stress condition.
Environmental Stresses in Crop Sciences, 12, 585–594.
https://doi.org/10.22077/escs.2018.1337.1275 [In Persian]
Gharib, H., Hafez, E., & El Sabagh, A. (2016). Optimized potential of utilization efficiency and productivity in wheat by integrated chemical nitrogen fertilization and stimulative compounds.
Agricultural and Food Sciences, 2, 5–20.
https://doi.org/10.1515/cerce-2016-0011
Ghassemi-Golezani, K., & Abdoli, S. (2022). Physiological and biochemical responses of medicinal plants to salt stress.
Environmental Challenges and Medicinal Plants, 1, 153–181.
https://doi.org/10.1007/978-3-030-92050-0_6
Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms.
Plant Biology, 24, 227–239.
https://doi.org/10.1111/plb.13363
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
Plant Physiology and Biochemistry, 48(12), 909–930.
https://doi.org/10.1016/j.plaphy.2010.08.016
Götz, F., Longnecker, K., Kido Soule, M. C., Becker, K. W., McNichol, J., & Kujawinski, E. B. (2018). Targeted metabolomics reveals proline as a major osmolyte in the chemolithoautotroph
Sulfurimonas denitrificans.
MicrobiologyOpen, 7(4), e00586.
https://doi.org/10.1002/mbo3.586
Golizadeh, S. K., Mahmoodi, T. M., & Khaliliaqdam, N. (2015). Effect of priming (KNO3, ZnSO4, distilled water) on rate of germination and seedling establishment of cannabis seed (
Cannabis sativa L.).
Biological Forum – An International Journal, 7, 190–194.
http://researchtrend.net/bf12/33%20tooraj%20mir%20mahmoodi.pdf
Guo, Q., Liu, L., & Barkla, B. J. (2019). Membrane lipid remodeling in response to salinity.
International Journal of Molecular Sciences, 20(7), 4264.
https://doi.org/10.3390/ijms20174264
Hafez, E. M. A., Omara, E. D., Alhumaydhi, F. A., & El-Esawi, M. A. (2021). Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar.
Physiologia Plantarum, 172(2), 587–602.
https://doi.org/10.1111/ppl.13261
Hafez, Y. M., & Abdelaal, K. A. (2015). Investigation of susceptibility and resistance mechanisms of some Egyptian wheat cultivars (
Triticum aestivum L.) inoculated with
Blumeria graminis f.sp.
tritici using certain biochemical, molecular characterization and SEM.
Journal of Plant Protection and Pathology, 6(3), 431–454.
https://doi.org/10.21608/jppp.2015.53305
Hasanuzzaman, M., & Fujita, M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions.
International Journal of Molecular Sciences, 23(9), 4810.
https://doi.org/10.3390/ijms23094810
Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity.
International Journal of Molecular Sciences, 22(9), 9326.
https://doi.org/10.3390/ijms22099326
Hussain, S., Yin, H., Peng, S., Khan, F. A., Khan, F., Sameeullah, M., Hussain, H. A., Huang, J., Cui, K., & Nie, L. (2016). Comparative transcriptional profiling of primed and nonprimed rice seedlings under submergence stress.
Frontiers in Plant Science, 7, 1125.
https://doi.org/10.3389/fpls.2016.01125
Hussain, S., Khan, F., Hussain, H. A., & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance of rice cultivars.
Frontiers in Plant Science, 7, 116.
https://doi.org/10.3389/fpls.2016.00116
Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., & Khan, A. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defense system of soybean plants.
AoB Plants, 13, plab026.
https://doi.org/10.1093/aobpla/plab026
Iqbal, S., Hussain, S., Qayyaum, M. A., & Ashraf, M. (2020). The response of maize physiology under salinity stress and its coping strategies.
Plant Stress Physiology, 1, 1–26.
https://doi.org/10.5772/intechopen.92213
International Seed Testing Association (ISTA). (2010). International rules for seed testing. Bassersdorf, Switzerland: The International Seed Testing Association.
Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress.
Plant Physiology and Biochemistry, 162, 247–257.
https://doi.org/10.1016/j.plaphy.2021.02.034
Khan, I. H., & Ahmad, I. (2024). Salicylic acid application improves growth and alleviates the adverse effects of heat stress in pea (
Pisum sativum L.).
Pakistan Journal of Botany, 56(1), 43–53.
https://doi.org/10.30848/PJB2024-1(4)
Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions.
PLoS One, 14(9), e0222302.
https://doi.org/10.1371/journal.pone.0222302
Khan, W. M., Prithiviraj, B., & Smith, D. L. (2002). Effect of foliar application of chitin oligosaccharides on photosynthesis of maize and soybean.
Photosynthetica, 40, 621–624.
https://doi.org/10.1023/A:1024320606812
Kibinza, S., Bazin, J., Bailly, C., Farrant, J. M., Corbineau, F., & El-Maarouf-Bouteau, H. (2011). Catalase is a key enzyme in seed recovery from ageing during priming.
Plant Science, 181(3), 309–315.
https://doi.org/10.1016/j.plantsci.2011.06.003
Kochert, G. (1978). Carbohydrate determination by phenol-sulfuric acid method. In J. Hellebust & J. S. Craig (Eds.), Physiological and biochemical methods (pp. 95–97). Cambridge University Press.
Kumar, K., Manigundan, K., & Amaresan, N. (2016). Influence of salt-tolerant
Trichoderma spp. on growth of maize (
Zea mays) under different salinity conditions.
Journal of Basic Microbiology, 57(2), 141–150.
https://doi.org/10.1002/jobm.201600369
Landi, S., Capasso, G., Ben Azaiez, F. E., & Jallouli, S. (2019). Different roles of heat shock proteins (70 kDa) during abiotic stresses in barley (
Hordeum vulgare) genotypes.
Plants, 8(8), 248.
https://doi.org/10.3390/plants8080248
Li, J., Yang, Y., Sun, K., Chen, Y., Chen, X., & Li, X. (2019). Exogenous melatonin enhances cold, salt, and drought stress tolerance by improving antioxidant defense in tea plant (
Camellia sinensis (L.) O. Kuntze).
Molecules, 24(9), 1826.
https://doi.org/10.3390/molecules24091826
Luo, Y. Z., Li, G., Yan, G., Liu, H., & Turner, N. C. (2020). Morphological features and biomass partitioning of lucerne plants (
Medicago sativa L.) subjected to water stress.
Agronomy, 10(3), 322.
https://doi.org/10.3390/agronomy10030322
Ma, L., Yang, S., Simayi, Z., Gu, Q., Li, J., Yang, X., & Ding, J. (2018). Modeling variations in soil salinity in the oasis of Junggar Basin, China.
Land Degradation & Development, 29(3), 551–562.
https://doi.org/10.1002/ldr.2890
Malik, J. A., AlQarawi, A. A., AlZain, M. N., Dar, B. A., Habib, M. M., & Ibrahim, S. N. S. (2022). Effect of salinity and temperature on the seed germination and seedling growth of desert forage grass
Lasiurus scindicus Henr.
Sustainability, 14(14), 8387.
https://doi.org/10.3390/su14148387
Mansoor, S., Wani, O. A., Lone, J. F., Manhas, S., Kour, N., Alam, P., Ahmad, A., & Ahmad, P. (2022). Reactive oxygen species in plants: From source to sink.
Antioxidants, 11(2), 225.
https://doi.org/10.3390/antiox11020225
Mansouri Gandomani, V., Omidi, H., & Bostani, A. A. (2019). Study on effects of pretreatment nanoparticle silicon dioxide (SiO2) on seed germination and biochemical indicators of soybean (
Glycine max L.) cultivars Williams under salinity.
Iranian Journal of Seed Sciences & Research, 6(3), 299–315.
https://doi.org/10.22124/JMS.2019.3814 [In Persian]
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible strategy to enhance drought tolerance in crop plants.
International Journal of Molecular Sciences, 21(21), 8258.
https://doi.org/10.3390/ijms21218258
Masoumi, A., Kafi, M., Khazaei, H. R., & Davari, K. (2010). Effect of drought stress on water status, electrolyte leakage, and enzymatic antioxidants of Kochia (Kochia scoparia) under saline conditions. Pakistan Journal of Botany, 42(5), 3517–3524.
Mbarki, S., Cerdà, A., Zivcak, M., Brestic, M., Rabhi, M., Mezni, M., Jedidi, N., Abdelly, C., & Pascual, J. A. (2018). Alfalfa crops amended with MSW compost can compensate for the effect of salty water irrigation depending on the soil texture.
Process Safety and Environmental Protection, 115, 8–16.
https://doi.org/10.1016/j.psep.2017.09.001
Mazor, L., Perl, M., & Negbi, M. (1984). Changes in some ATP-dependent activities in seeds during treatment with polyethylene glycol and during the rehydration process.
Journal of Experimental Botany, 35, 1119–1127.
https://doi.org/10.1093/jxb/35.8.1119
McCue, P., & Shetty, K. (2002). A biochemical analysis of mung bean (
Vigna radiata) response to microbial polysaccharides and potential phenolic-enhancing effects for nutraceutical applications.
Food Biotechnology, 16(1), 57–79.
https://doi.org/10.1081/FBT-120004201
Migahid, M. M., Elghobashy, R. M., & Bidak Amin, A. W. (2019). Priming of
Silybum marianum (L.) Gaertn seeds with H₂O₂ and magnetic field ameliorates seawater stress.
Heliyon, 5(6), e01886.
https://doi.org/10.1016/j.heliyon.2019.e01886
Mohamed, A. B., El-Banna, M. F., Farouk, S., & Khafagy, M. A. (2019). The role of grain priming and its duration on wheat germination and seedling growth.
Journal of Plant Production, 10(4), 343–349.
https://doi.org/10.21608/jpp.2019.36267
Mondal, S., & Bose, B. (2021). Seed priming: An interlinking technology between seeds, seed germination, and seedling establishment.
Plant Reproductive Ecology: Recent Advances, 2, 1–27.
https://doi.org/10.5772/intechopen.100804
Mousavi, S. E., Omidi, H., Saeedizadeh, A., & Aghighi Shahverdi, M. (2021). The effect of biological pre-treatments on germination and physiological indices of pumpkin (
Cucurbita pepo var.
Styriaca) seedlings under salt stress.
Iranian Journal of Seed Research, 7(2), 33–53.
https://doi.org/10.52547/yujs.7.2.33 [In Persian]
Mwando, E., Han, Y., Angessa, T. T., Zhou, G., Hill, C. B., Zhang, X. Q., & Li, C. (2020). Genome-wide association study of salinity tolerance during germination in barley (
Hordeum vulgare L.).
Frontiers in Plant Science, 11, 118.
https://doi.org/10.3389/fpls.2020.00118
Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U., & Iqbal, S. (2022). Effect of salinity stress on germination, seedling growth, mineral uptake, and chlorophyll contents of three Cucurbitaceae species.
Brazilian Archives of Biology & Technology, 65(1), 1–10.
https://doi.org/10.1590/1678-4324-2022210213
Nazari, R., Parsa, S., Tavakkol Afshari, R., & Mahmoodi, S. (2020). The effect of seed priming with salicylic acid on the activity of antioxidant enzymes and lipid peroxidation in deteriorated seeds of soybean (
Glycine max (L.) Merrill, William variety).
Iranian Journal of Seed Science & Technology, 9(1), 57–70.
https://doi.org/10.22034/ijsst.2018.116566.1149 [In Persian]
Omidi, H., Leyla, J., & Hasanali, N. (2014). Seeds of medicinal plants and crops. Natural Resources & Environment, 269–189.
Ozturk, M., Turkyilmaz Unal, B., García-Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during drought stress in plants.
Plant Physiology, 172(2), 1321–1335.
https://doi.org/10.1111/ppl.13297
Panahi, M., Akbari, G. A., Roustakhiz, J., & Golbashi, M. (2012). Response of safflower genotypes (Carthamus tinctorius L.) to salinity stress via germination and early seedling growth. Iranian Journal of Science & Technology, 12, 211–222. [In Persian]
Rashwan, E., Alsohim, A. S., El-Gammaal, A., Hafez, Y., & Abdelaal, K. A. A. (2020). Foliar application of nano zinc oxide can alleviate the harmful effects of water deficit on some flax cultivars under drought conditions.
Fresenius Environmental Bulletin, 29, 8889–8904.
https://www.researchgate.net/publication/344652775
Reason, R., Chimwe, C., Chandiposha, M., & Manjeru, P. (2023). The effect of seed priming to improve germination parameters and early growth of chickpea (
Cicer arietinum L.).
International Journal of Agronomy, 1178679, 1–8.
https://doi.org/10.1155/2023/1178679
Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K., Kim, K. S., & Gupta, R. (2020). Ethylene: A master regulator of salinity stress tolerance in plants.
Biomolecules, 10(6), 959.
https://doi.org/10.3390/biom10060959
Roshdy, A. E. D., Alebidi, A., Almutairi, K., Al-Obeed, R., & Elsabagh, A. (2021). The effect of salicylic acid on the performances of salt-stressed strawberry plants, enzymes activity, and salt tolerance index.
Agronomy, 11(5), 775.
https://doi.org/10.3390/agronomy11040775
Saadat, H., & Sedghi, M. (2021). Effect of priming and aging on physiological, biochemical traits of common bean (
Phaseolus vulgaris L.) seeds.
Iranian Journal of Seed Research, 11(3), 75–89.
https://doi.org/10.30495/jsr.2022.1945870.1228 [In Persian]
Saadat, H., Soltani, E., & Sedghi, M. (2023d). The effect of seed priming with chitosan on germination characteristics and activity of antioxidant enzymes in rice seedlings (
Oryza sativa L.) under salinity stress.
Plant Process & Function, 12(54), 239–258.
https://doi.org/10.1001.1.23222727.1402.12.54.15.5 [In Persian]
Saadat, H., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023b). The effect of priming with different levels of chitosan on physiological and biochemical traits in French bean (
Phaseolus vulgaris L.) under salinity stress.
Plant Production Technology, 14(2), 75–89.
https://doi.org/10.22084/PPT.2023.26100.2075 [In Persian]
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R., & Sheykhbaglou, R. (2023c). Effect of chitosan on germination indices of common bean (
Phaseolus vulgaris) (cv. Sedri) seeds under salt stress.
Iranian Journal of Seed Research, 9(2), 151–162.
https://doi.org/10.61186/yujs.9.2.151 [In Persian]
Saadat, H. (2023). The effect of chitosan on the germination behavior of bean seeds under salinity stress (Ph.D. thesis). Mohaghegh Ardabili University of Ardabil, Iran.
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R., & Sheykhbaglou, R. (2020a). The effect of priming deterioration on the activity of antioxidant enzymes and the mobility of seed reserves in French bean (
Phaseolus vulgaris L.) cv. Sadri.
Iranian Journal of Seed Science & Technology, 8(2), 19–32.
https://doi.org/10.22034/ijsst.2018.116851.1154 [In Persian]
Saadat, T., Sedghi, M., Gholipouri, A., Seyed Sharifi, R., & Sheykhbaglou, R. (2020b). Effect of seed priming on common bean (
Phaseolus vulgaris L.).
Iranian Journal of Seed Sciences & Research, 7(1), 1–13.
https://doi.org/10.22124/JMS.2020.4267 [In Persian]
Sadeghi, H., Khazaei, F., Yari, L., & Sheidaei, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). Journal of Agriculture and Biological Sciences, 6, 39–43.
Seleiman, M. F., Semida, W. M., Rady, M. M., Mohamed, G. F., Hemida, K. A., Alhammad, B. A., Hassan, M. M., & Shami, A. (2020). Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber.
Plants, 9(12), 1783.
https://doi.org/10.3390/plants9121783
Sen, A., & Puthur, J. T. (2020). Seed priming-induced physiochemical and molecular events in plants coupled to abiotic stress tolerance: An overview. In M. A. Hossain (Ed.), Priming-mediated stress and cross-stress tolerance in crop plants (pp. 303–316). Acad India Press.
Shafi, A., Zahoor, I., & Mushtaq, U. (2019). Proline accumulation and oxidative stress: Diverse roles and mechanism of tolerance and adaptation under salinity stress. In
Salt stress, microbes, and plant interactions (pp. 269–300). Mechan. Molecular Approach.
https://doi.org/10.1007/978-981-13-8805-7_13
Sher, A., Sarwar, T., Nawaz, M., Ijaz, A., Sattar, A., & Ahmad, S. (2019). Methods of seed priming. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and pretreatment of seeds & seedlings (pp. 1–10). Springer International Press.
Noreen, S., Saleem, S., Iqbal, U., Mahmood, S., Salim Akhter, M., Akbar, N., El-Sheikh, M., & Kaushik, P. (2024). Moringa olifera leaf extract increases physio-biochemical properties, growth, and yield of
Pisum sativum grown under salinity stress.
Journal of King Saud University – Science, 36(2), 103056.
https://doi.org/10.1016/j.jksus.2023.103056
Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M., & Sarparast, R. (2006). Modeling seedling emergence in chickpea as influenced by temperature and sowing depth.
Agricultural and Forest Meteorology, 138, 156–167.
https://doi.org/10.1016/j.agrformet.2006.04.004
Tahjib-Ul-Arif, M., Siddiqui, M. N., Sohag, A. A. M., Sakil, M. A., Rahman, M. M., & Polash, M. A. S. (2018). Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress.
Journal of Plant Growth Regulation, 37, 1318–1330.
https://doi.org/10.1007/s00344-018-9867-y
Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y., & Wang, Y. (2018). Impacts of priming on seed germination and seedling emergence of
Cleistogenes songorica under drought stress.
Seed Science and Technology, 46(2), 239–258.
https://doi.org/10.15258/sst.2018.46.2.06
Tamindži, G., Ignjatov, M., Miljaković, D., Cervenski, J., Milošević, D., Nikoli, Z., & Vasiljević, S. (2023). Seed priming treatments to improve heat stress tolerance of garden pea (
Pisum sativum L.).
Agriculture, 13(2), 439.
https://doi.org/10.3390/agriculture13020439
Tarabih, M., & El-Eryan, E. (2020). Glycine betaine and proline with thinning technique for resistance to abiotic stress of Cristalina cactus pear.
Pakistan Journal of Biological Sciences, 23(1), 68–80.
https://doi.org/10.3923/pjbs.2020.68.80
Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M., & Muccifora, S. (2021). Response to salinity in legume species: An insight into the effects of salt stress during seed germination and seedling growth.
Chemistry and Biodiversity, 18, e2000917.
https://doi.org/10.1002/cbdv.202000917
Tsonev, T. D., Lazova, G. N., Stoinova, Z. G., & Popova, L. P. (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress.
Journal of Plant Growth Regulation, 17(3), 153–159.
https://doi.org/10.1007/PL00007029
Wahid, A., Noreen, A., Basra, S. M., Gelani, S., & Farooq, M. (2008). Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Botanical Studies, 49(2), 343–350.
Wallace, T. C., Murray, R., Kathleen, M., & Zelman, K. (2016). The nutritional value and health benefits of chickpeas and hummus.
Nutrients, 8(12), 766.
https://doi.org/10.3390/nu8120766
Wassie, M., Zhang, W., Zhang, Q., Ji, K., & Chen, L. (2019). Effect of heat stress on growth and physiological traits of alfalfa (
Medicago sativa L.) and a comprehensive evaluation for heat tolerance.
Agronomy, 9(10), 597.
https://doi.org/10.3390/agronomy9100597
Zamani, A., Sadat Nouri, S. A., Tavakol Afshari, R., Iran Nejad, H., Akbari, G. H. A., & Tavakoli, A. (2010). Evaluation of lipid peroxidation and activity of antioxidant enzymes in safflower seed under natural and artificial aging.
Iranian Journal of Crop Sciences, 41(3), 545–554.
https://doi.org/10.1001.1.20084811.1389.41.3.12.5 [In Persian]
Zhang, X. H., Zhou, D., Cui, J. J., Ma, H. L., Lang, D. Y., Wu, X. L., Wang, Z. S., Qiu, H. Y., & Li, M. (2015). Effect of silicon on seed germination and the physiological characteristics of
Glycyrrhiza uralensis under different levels of salinity.
Journal of Horticultural Science and Biotechnology, 90, 439–443.
https://doi.org/10.1080/14620316.2015.11513207