نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 محقق ایستگاه تحقیقات کشاورزی و منابع طبیعی آلاروق (اردبیل)، مرکز تحقیقات کشاورزی و منابع طبیعی استان اردبیل (مغان)، اردبیل، ایران.

3 استادیار، بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران.

چکیده

این مطالعه با هدف بررسی نقش مصرف همزمان گوگرد و روی بر تولید تجاری بذر منوژرم چغندرقند به‌صورت فاکتوریل بر پایه طرح بلوک‏های کامل تصادفی با سه تکرار اجرا شد. تیمارهای آزمایشی شامل غلظت‌های گوگرد (صفر، 200 و 400 کیلوگرم در هکتار) و روی (صفر، 20 و 40 کیلوگرم در هکتار) بود. نتایج نشان داد، عملکرد بذر خام و بذر قابل‏فروش و اثرمتقابل گوگرد در روی تنها بر عملکرد بذر خام معنی‌دار بود. با مصرف 400 کیلوگرم گوگرد در هکتار، عملکرد بذر خام 17 درصد و بذر قابل فروش 54 درصد افزایش یافت. بالاترین عملکرد بذر خام (3443 کیلوگرم در هکتار) با مصرف 400 کیلوگرم در هکتار گوگرد و 40 کیلوگرم در هکتار روی به‏دست آمد. مصرف توأم گوگرد و روی موجب افزایش سهم بذرهای اورسایز و استاندارد و کاهش سهم بذر زیرسرند شد. بیشترین درصد بذرهای اورسایز (35 درصد) در مصرف 400 کیلوگرم در هکتار گوگرد و 20 کیلوگرم در هکتار روی بدست آمد اما بیشترین درصد بذرهای استاندارد از مصرف 400 کیلوگرم در هکتار گوگرد و 40 کیلوگرم در هکتار روی حاصل شد. مصرف 400 کیلوگرم در هکتار گوگرد موجب افزایش 12 درصدی قوه‏نامیه مکانیکی، 6 درصد قویه‌نامیه فیزیولوژیکی و کاهش 41 درصدی بذرهای پوک و 3 درصدی منوژرمیته نسبت به شاهد شد. گوگرد موجب بهبود کمی و کیفی بذر تولیدی چغندرقند شد ولی روی تأثیر چندانی نداشت و تنها موجب افزایش میزان بذر تولیدی شد. در شرایط این مطالعه، مصرف ترکیب 400 کیلوگرم در هکتار گوگرد و 40 کیلوگرم در هکتار روی، قابل‏توصیه بود.

کلیدواژه‌ها

 Ahmad, G., Jan, A., Arif, M., Tariq Jan, M., & Shad, H. (2012). Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. Plant Nutrition, 34(14), 2069–2089. https://doi.org/10.1080/01904167.2011.618569
Ajam Hosiny, M. (2021). Changes in blood cells of sugar beet willow larvae Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) under the influence of temperature stress. Journal of Entomology Society of Iran, 41(1), 101–103. https://doi.org/10.22117/jesi.2021.353933.1412 [In Persian]
Akter, F., Islam, N., Shamsuddoha, A. T. M., Bhuiyan, M., & Shilpi, S. (2013). Effect of phosphorus and sulfur on growth and yield of soybean (Glycine max L.). International Journal of Bio-resource and Stress Management, 4(4), 556–561. https://doi.org/10.1040/01904167.2012.518461
Aljabri, M., Alharbi, S., Al-Qthanin, R. N., Ismaeil, F. M., Chen, J., & Abou-Elwafa, S. F. (2021). Recycling of beet sugar byproducts and wastes enhances sugar beet productivity and salt redistribution in saline soils. Environmental Science and Pollution Research, 28, 45745–45755. https://doi.org/10.1007/s11356-021-13860-3
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548. https://doi.org/10.1007/s10653-009-9255-4
Andrés-Barrao, C., Alzubaidy, H., Jalal, R., Mariappan, K. G., De Zelicourt, A., Bokhari, A., & Hirt, H. (2021). Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187–induced plant salt stress tolerance. Proceedings of the National Academy of Sciences, 118(46). https://doi.org/10.1073/pnas.2107417118
Besharati, H., & Motalebifard, R. (2015). Evaluation of the effect of sulfur application and Thiobacillus on some soil chemical characteristics and yield of canola in wheat-canola rotation system. Journal of Water and Soil, 29, 1688–1698. https://doi.org/10.22067/JSW.V29I6.41985 [In Persian]
Besharaty, H., Khavazi, K., & Saleh-Rastin, N. (2001). Evaluation of some carriers for Thiobacillus inoculants used along with sulfur to increase uptake of nutrients by corn and improve performance. Plant Nutrition, 672–677. https://doi.org/10.1007/0-306-47624-X_326
Boem, F. H. G., Prystupa, P., & Ferraris, G. (2007). Seed number and yield determination in sulfur-deficient soybean crops. Plant Nutrition, 30, 93–104. https://doi.org/10.1080/01904160601055095
Cakmak, I., McLaughlin, M. J., & White, P. (2017). Zinc for better crop production and human health. Plant and Soil, 411, 1–4. https://doi.org/10.1007/s11104-016-3166-9
Cao, H., Zhang, L., & Melis, A. (2000). Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta). Journal of Applied Phycology, 13, 25–35. https://doi.org/10.1023/A:1008131412909
Chegini, M. A., & Etihad, M. (2012). Investigating the effect of seed grading, seed coat abrasion, and pitting on some important qualitative traits of monogerm sugar beet seeds of Gadok variety. Iranian Seed Science and Technology, 2(2), 207–218. https://sid.ir/paper/513017 [In Persian]
Devi, K. N., Singh, L. N. K., Singh, M. S., Singh, S. B., & Singh, K. K. (2012). Influence of sulfur and boron fertilization on yield, quality, nutrient uptake, and economics of soybean (Glycine max) under upland conditions. Agricultural Science, 12, 421–431.
Ebrahimian, E., Bybordi, A., & Pasban Eslam, B. (2010). Efficiency of zinc and iron application methods on sunflower. Food, Agriculture & Environment, 8(3), 783–789. http://www.isfae.org/scientificjournal.php
Esanejad, N. S., Maleki Farahani, S., & Rezazadeh, A. (2017). Evaluation of the effect of maternal growth environment on survival of barley seeds (Hordeum vulgare L.). Iranian Journal of Field Crop Science, 48(1), 233–242. https://doi.org/10.22059/IJFCS.2017.122885.653857 [In Persian]
Fazili, I. S., Jamal, A., Ahmad, S., Masoodi, M., Khan, J. S., & Abdin, M. Z. (2008). Interactive effect of sulfur and nitrogen on nitrogen accumulation and harvest in oilseed crops differing in nitrogen assimilation potential. Journal of Plant Nutrition, 31(7), 1203–1220. https://doi.org/10.1080/01904160802134905
Friemel, M., Marelja, Z., Li, K., & Leimküher, S. (2017). The N-terminus of iron–sulfur cluster assembly factor ISD11 is crucial for subcellular targeting and interaction with l-cysteine desulfurase NFS1. Biochemistry, 56(12), 1797–1808. https://doi.org/10.1021/acschembio.3c00147
Ghaderi, J., Malakooti, M. J., Khavazi, K., & Davoudi, M. H. (2017). Investigation of the effect of elemental sulfur application on yield and some quality characteristics of irrigated wheat (Triticum aestivum L.). The Crop Physiology Journal, 9(33), 69–84. [In Persian]
Ghobady, M., Jhanbin, S. H., Olaiy, H., & Matlabifar Parvizy, H. (2013). Effect of phosphorus biofertilizers on yield and phosphorus absorption in potato. Journal of Water and Soil Science, 23(2), 125–138. [In Persian]
Gilani, A., Abbasdokht, H., & Gholami, A. (2022). Effects of elemental sulfur application with Halothiobacillus neapolitanus on morphophysiological traits and yield of mung bean (Vigna radiata L.). Scientific Research Journal of Agricultural Science and Sustainable Production,, 189–205.
Golbashe, M., Ebrahimi, M., Khavri Khorasnay, S., Chokan, R., & Zraby, M. (2010). Evaluation of some morphological traits, yield, and yield components in seed corn hybrids (Zea mays L.) under the climatic conditions of Mashhad. Agricultural Ecology, 2(1), 75–84. https://doi.org/10.22067/jag.v2i1.7604 [In Persian]
Grath, S. M., & Zhao, F. J. (1996). Sulphur uptake, yield responses, and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). Journal of Agricultural Science, London, 126(1), 53–62.
Grimwade, J. A., Grierson, D., & Whittington, G. (1987). The effect of differences in time to maturity on the quality of seed produced by sugar beet different parent lines. Zemledeliya, 2, 20–26. https://doi.org/10.5555/19871662266
Habibi, M., Majiian, M., & Rabiy, M. (2014). Effect of boron, zinc, and sulfur elements on seed yield and composition of rapeseed oil fatty acids. Agricultural Crops, 16(1), 69–84. https://doi.org/10.22059/jci.2014.51943 [In Persian]
Hadavizadeh, A., & George, R. A. T. (2007). The effect of mother plant nutrition on seed vigor as determined by the seed leachate conductivity in pea, cultivar SpriteSeed Science and Technology, 16, 589–599. https://doi.org/10.5555/19890725066
Hamidi, A., & Chegini, M. A. (2016). Effect of seed size of different varieties of sugarcane on some characteristics of germination and plant base. Sugar beet, 31(2), 157–166. https://doi.org/10.22092/jsb.2016.105777 [In Persian]
Hesami, A. (2018). Investigating weed management and sugar beet yield in different amounts of urea fertilizer with sulfur coating. Journal of Plant Agronomy, 8(2), 147–156. [In Persian]
Ijaz, A., Mumtaz, M. Z., Wang, X., Ahmad, M., Saqib, M., Maqbool, H., & Mustafa, A. (2021). Insights into manganese solubilizing Bacillus spp. for improving plant growth and manganese uptake in maize. Frontiers in Plant Science, 12, 719504. https://doi.org/10.3389/fpls.2021.719504
International Seed Testing Association. (1985). International rules for seed testing. Rules 1985. Seed Science
Khadm, A., Golchin, A., & Zare, A. (2014). The effect of animal manure and sulfur on the absorption of nutrients by corn (Zea mays L.). Agricultural Applied Research, 27(103), 2–11. https://doi.org/10.1080/15538362.2021.1895034 [In Persian]
Khan, M. F. R., Haque, M. E., Hakk, P., Bhuiyan, M. Z. R., Liu, Y., Johnson, J., & Peters, D. (2021). First report of Pythium ultimum causing damping-off of sugar beet (Beta vulgaris) in Montana, USA. Plant Disease, 105(4), 1229–1229. https://doi.org/10.1094/PDIS-10-20-2108-PDN
Khavazi, K., Jhandid Mehjan Abad, H., & Taghipor, F. (2018). The effect of application of sulfur, Thiobacillus bacteria, and phosphorus on yield and nutrient absorption of wheat in calcareous soil. Journal of Sugar Beet, 8(2), 23–41. https://doi.org/10.22069/EJSMS.2018.13665.1761 [In Persian]
Levandovskiy, L. V., & Myhailyk, V. S. (2017). Gradient-continuous yeast cultivation for alcohol production from molasses. Biotechnologia Acta, 10(3), 50–56. https://doi.org/10.15407/biotech10.03.050
Liu, T., Clegg, S. L., & Abbatt, J. P. (2020). Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proceedings of the National Academy of Sciences, 117(3), 1354–1359. https://doi.org/10.1073/pnas.191640111
Mahawar, L., Ramasamy, K. P., Pandey, A., & Prasad, S. M. (2023). Iron deficiency in plants: An update on homeostasis and its regulation by nitric oxide and phytohormones. Plant Growth Regulation, 100(2), 283–299. https://doi.org/10.1007/s10725-022-00853-6
Malhi, S. S., Gan, Y., & Raney, J. P. (2007). Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agronomy, 99(2), 570–577. https://doi.org/10.2134/agronj2006.0269
Mardanluo, S., Souri, M. K., & Ahmadi, M. (2018). Plant growth and fruit quality of two pepper cultivars under different potassium levels of nutrient solutions. Journal of Plant Nutrition, 41(12), 1604–1614. https://doi.org/10.1080/01904167.2018.1463383
Martins, N. C., Avellan, A., Rodrigues, S., Salvador, D., Rodrigues, S. M., & Trindade, T. (2020). Composites of biopolymers and ZnO NPs for controlled release of zinc in agricultural soils and timed delivery for maize. ACS Applied Nano Materials, 3(3), 2134–2148. https://doi.org/10.1021/acsanm.9b01492
Mir Mahmoudi, T., Hamze, H., & Golabi Lak, I. (2023). Impact of biofertilizer and zinc nanoparticles on enzymatic, biochemical, and agronomic properties of sugar beet under different irrigation regimes. Zemdirbyste-Agriculture, 110(3). https://doi.org/10.13080/z-a.2023.110.025
Miyatake, M., Ohyama, T., Yokoyama, T., Sugihara, S., Motobayashi, T., Kamiya, T., & Ohkama-Ohtsu, N. (2019). Effects of deep placement of controlled-release nitrogen fertilizer on soybean growth and yield under sulfur deficiency. Soil Science and Plant Nutrition, 65(3), 259–266. https://doi.org/10.1080/00380768.2019.1615827
Mohammadi, S. (2015). Investigating the relationships between grain yield and its components in bread wheat cultivars under full irrigation conditions and moisture stress at the end of the season using multivariate statistical methods. Agricultural Research in Iran, 12(1), 99–109. https://doi.org/10.15835/nbha4017350 [In Persian]
Mosavi Nik, M. (2012). Effect of drought stress and sulfur fertilizer on quantity and quality yield of psyllium (Plantago ovata L.) in Balochistan. Agricultural Ecology Journal, 4(2), 170–182. https://sid.ir/paper/211267/en [In Persian]
Mosavi, F., Moraeshi, S. K., & Babaei Nezhad, T. (2019). The effect of sulfur and Thiobacillus on improving morphophysiological characteristics of wheat (Triticum aestivum L.) in Khuzestan lands. Iranian Journal of Crop Sciences, 9(2), 97–106. https://sanad.iau.ir/journal/jpps/Article/669600?jid=669600&lang=en [In Persian]
Motamedi, A. (2006). The effect of different sulfur levels on the quantitative and qualitative performance of wheat cultivar Pishtaz: Short scientific paper. Journal of Seedling and Seed, 22(2), 273–276. [In Persian]
Motior, M. R., Abdou, A. S., Fareed, H. A. D., & Sofian, M. A. (2011). Responses of sulfur, nitrogen, and irrigation water on Zea mays growth and nutrients uptake. Australian Journal of Crop Science, 5(3), 347–357. https://search.informit.org/doi/10.3316/informit.280104752348407
Muldabekova, B. Z., Umirzakova, G. A., Assangaliyeva, Z. R., Maliktayeva, P. M., Zheldybayeva, A. A., & Yakiyayeva, M. A. (2022). Nutritional evaluation of buns developed from chickpea-mung bean composite flour and sugar beet powder. International Journal of Food Science, 2022, 1–15. https://doi.org/10.1155/2022/6009998
Mustafa Yad, M., Hamasbi Sarvestani, Z., Modars Sanvi, S. A. M., & Ghalavand, A. (2012). Evaluation of some canola agronomic traits under the influence of different sulfur levels. Iranian Agricultural Research, 10(3), 495–502. https://doi.org/10.22067/gsc.v10i3.17670 [In Persian]
Naghdipor, A., Khodarahmi, A., Porshahbazi, A., & Eesmailzade, M. (2011). Factor analysis for grain yield and other traits in durum wheat. Journal of Agronomy and Plant Breeding, 7, 84–96.
Nasiri, M., & Raouf Sharifi, R. (2018). Effect of iron, manganese, and boron micronutrients on some morphological and quantitative characteristics of sugar beet seed. Journal of Agronomy and Plant Breeding, 1, 1–11. [In Persian]
Noorbakhsh, F. S., Behdani, M. A., Jami Al Ahmadi, M., & Mahmoodi. S. (2014). Evaluation of the integrated impact of sulfur and Thiobacillus on qualitative and morphological characteristics of safflower (Carthamus tinctorius L.). Agriculture and Ecosystems, 6(1), 51–59. https://sid.ir/paper/211017/en [In Persian]
Orman, S., & Kaplan, M. (2007). Effects of elemental sulfur and organic manure on sulfur, zinc, and total chlorophyll contents of tomato in a calcareous sandy loam soil. Journal of Soil Science Society of America, 55, 85–90.
Pan, H. Y., Ye, Z. W., Zheng, Q. W., Yun, F., Tu, M. Z., Hong, W. G., & Lin, J. F. (2022). Ergothioneine exhibits longevity-extension effect in Drosophila melanogaster via regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food and Function, 13(1), 227–241. https://doi.org/10.1039/D1FO02758A
Ravi, S., Channal, H. T., Hebsur, N. S., Patil, B. N., & Dharmatti, P. R. (2008). Effect of sulfur, zinc, and iron nutrition on growth, yield, nutrient uptake, and quality of safflower (Carthamus tinctorius L.). Karnataka Journal of Agriculture Science, 21(3), 382–385. https://doi.org/10.5555/20083314858
Rhaimian, Z. (2011). The effect of sulfur and Thiobacillus along with organic matter on quantitative and qualitative traits of rapeseed. Journal of Crop Plant Physiology, 3(12), 19–27. https://sid.ir/paper/174518/en [In Persian]
Rostel, H. G. (1972). Results of breeding for seed quality and the relationship between seed quality and performance in the first year. Report of the Agricultural Institute for Seed Quality, 7, 7–16. https://doi.org/10.5555/19741615676
Saeidi Nezhad, M., Behdani, M. A., Sayari Zahan, M. H., & Mahmoodi, S. (2020). The effect of sulfur and manure on quantitative and qualitative characteristics of sesame (Sesamum indicum L.). Agriculture and Ecosystems, 11(3), 845–857. https://doi.org/10.22067/JAG.V11I3.71128 [In Persian]
Safara, N., Moradi Telavt, M. R., Siadat, S. A., Koochekzadeh, A., & Mousavi, S. H. (2015). Effect of sowing date and sulfur on yield, oil content, and grain nitrogen of safflower (Carthamus tinctorius L.) in autumn cultivation. Iranian Journal of Field Crops Research, 14(3), 438–448. https://doi.org/10.22034/SAPS.2021.42739.2573 [In Persian]
Sharifi, R., & Syiahkholaki, M. S. (2015). Effects of biofertilizers on growth indices and contribution of dry matter remobilization in wheat grain yield. Journal of Plant Research (Iranian Journal of Biology), 28(2), 326–343. https://doi.org/10.28211 [In Persian]
Slyusarenko, Z. S., & Petrushina, M. P. (1987). Cytogenetic expression of incompatibility in the production of sugar beet. Dostizheniya i Perspektivy Vselektsii Sakharnoy Svekly, 42–51.
Sroller, J. (1991). Reserres in sugar beet seed production. Sbornik Vysoke Skoly Zemedelske Praze, Fakulta Agronomicka, 53, 191–198.
Sun, L., Wang, R., Ju, Q., & Xu, J. (2020). Physiological, metabolic, and transcriptomic analyses reveal the responses of Arabidopsis seedlings to carbon nano horns. Environmental Science & Technology, 54(7), 4409–4420. https://doi.org/10.1021/acs.est.9b07133
Taleghani, D. F., Dehghan Shaar, M., Ghasemi, A., Yusufabadi, W., Chegini, M. A., & Hamdi, F. (2004). Determining the most appropriate seed size and amounts of consumables in coating single sprout sugar beet seeds. Sugar Beet Journal, 18(2), 95–108. https://sid.ir/paper/57610/fa [In Persian]
Varshavska, V. B., Lenchevska, L. K., & Korsun, L. I. (1991). Improvement in sowing qualities of sugar beet seeds with growth regulators. Ukrainskii Botanichnii Zhurnal, 48, 71–75. https://doi.org/10.5555/19910748412
Yang, M., Shi, L., Xu, F. S., Lu, J. W., & Wang, Y. H. (2009). Effects of B, Mo, and Zn and their interactions on seed yield of Brassica napus L. (rapeseed). Pedosphere, 19(1), 53–59. https://doi.org/10.5555/20093108770
Zakaria, M. S., Hafez, S. A., Basyony, A. E., & Alkassas, A. E. R. (2006). Cottonseed, protein, oil yields, and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant. Agricultural Sciences, 2(1), 56–65.