اثر پرایمینگ و فرسودگی بر فعالیت آنزیم‌های آنتی‌اکسیدانت و تحرک ذخایر بذر لوبیا چیتی (Phaseolus Vulgaris L.) رقم صدری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی، دانشکده کشاورزی و منابع طبیعی، گروه زراعت و اصلاح

2 گروه زراعت و اصلاح نباتات دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

3 گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی

چکیده

به منظور بررسی اثر پرایمینگ و فرسودگی بر روی فعالیت آنزیم‌های آنتی‌اکسیدانت و تحرک ذخایر لوبیا، آزمایشی بصورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار اجرا گردید. تیمارها شامل فرسودگی (شاهد بدون فرسودگی، 88 و 78 درصد جوانه‌زنی) و پرایمینگ (شاهد، هیدرو پرایمینگ، پرایمینگ با جیبرلین و اسید سالیسیلیک) بود. نتایج نشان داد که فرسودگی درصد جوانه‌زنی را کاهش داد. پرایمینگ سبب کاهش تاثیر فرسودگی و بهبود درصد جوانه‌زنی گردید. با افزایش فرسودگی کارایی استفاده از ذخایر، کارایی تحرک ذخایر و کسر ذخایر مصرف شده کاهش یافت، ولی شاخص تنفس و وزن خشک باقی‌مانده بذر افزایش یافتند. میزان کاهش SRUE نسبت به تیمار شاهد فرسودگی در حدود30% بود و شاخص تنفس بذر نیز در پیش تیمار جیبرلین در حدود 24% نسبت به شاهد بدون پرایمینگ بیشتر بود. محتوای کل پروتئین بذر در پیش تیمار جیبرلین و بدون فرسودگی در حدود 32% افزایش داشت. میزان فعالیت آنزیم پراکسیداز در تیمار جیبرلین و فرسودگی 88% نسبت به شاهد در حدود 57% افزایش نشان داد. بیشترین میزان فعالیت آنزیم سوپراکسید دیسمیوتاز (2/175 واحد بر میلی گرم) در پرایمینگ با اسید سالیسیلیک و فرسودگی 88% دیده شد. حداکثر مقدار مالون دی‎آلدئید (46/1 میلی مول بر گرم) به تیمار بدون پرایمینگ و فرسودگی 78% ارتباط داشت. درکل، استفاده از پیش تیمار جیبرلین موجب تقویت فیزیولوژیکی بذرهای ضعیف لوبیا شد و از این تیمار می‌توان جهت افزایش بنیه بذرهای ضعیف استفاده کرد.

کلیدواژه‌ها


Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.

Alizadeh, A. 1997. Water, Soil and Plants Relations. Astan Quds Razavi Press.

Anonymous. 2008. Food Outlook, Global Market Analysis [Online]. Available at http://www.fao.food outlook.com

Ansari, O., R. Tavakkol Afshari, F. Sharif-Zadeh, and A. Shayanfar. 2013. The role of priming on seed reserve utilization and germination of mountan rye (Secale montanum) seeds under salinity stress. (In Persian, with English Abstract.) Iranian J. Field Crop Sci.44(2): 181-189.

Ashraf, M., H. R. Athar, P. J. C. Harris, and T. R. Kwon. 2008. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 97: 45-92.

Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93- 107.

Bailly, C., A. Benamer, F. Cornineau, and D. Come. 2000. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci. Res. 10: 35-42.

Berlett, B. S., and E. R. Stadtman. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316.

Bray, C. M., P. A. Davision, M. Ashraf, and R. M. Taylor. 1989. Biochemical changes during osmopriming of leek seed. Ann. Bot. 63: 185-193.

Bruggink, G.T., J. J. J. Ooms, and P. Van der Toorn, 1999. Induction of longevity in primed seeds. Seed Sci Res. 9: 49- 53.

Burguieres, E., P. McCu, Y. Kwon, and K. Shetty. 2007. Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidation activity. Bioresour. Technol.98: 1393-1404.

Chen, K., and R. Arora. 2013. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94: 33-45.

Cruz de Carvalho, M. H. 2008. Drought stress and reactive oxygen species. Plant Signal Behav. 3: 156-165.

Davison, P. A., R. M. Taylor, and C. M. Bray. 1991. Changes in ribosomal RNA integrity in leek (Allium porrum L.) seeds during osmopriming and drying-back treatments. Seed Sci. Res. 1(1): 37-44.

Duman, I. 2006. Effect of seed priming with PEG and K3PO4 on germination and seedling growth in lettuce. Pakistan J. Biol. Sci.9(5): 923-928.

Ellias, S. G., A. L. Garary, and S. Haning. 2006. Seed quality testing of native species.Native Plant J. 7: 15-19.

Ellis, R. H., and E. H. Roberts. 1980. Towards a rational basis for testing seed quality. p. 605-635. In P.D. Hebblethwaite (ed.). Seed Production. Butterworth’s, London.

El-Shintinawy, F., and M. N. El-Shourbagy, 2001. Alleviation of changes in protein metabolism in NaCl -stressed wheat seedlings by thiamine. Biol. Plant. 44: 541-545.

El-Tayeb, M. A. 2005. Response of barley gains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45: 215-225.

Espin, G. B., P. D. Vivancos, D. Job, M. Belghazi, C. Job, and J. A. Hernandez. 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34: 107-1919.

Farooq, M., S. M. A. Basra, E. A. Warraich, and A. Khaliq, 2006. Optimization of hydropriming techniques for rice seed invigoration. Seed Sci. Technol. 34: 529-534.

Giannopolitis, C. N., and S. K. Ries, 1977. Suoeroxide dismutase. I. Occurrence in higher plants. J. Plant Physiol. 59: 309-314.

Hampton, J. G. 2003. Methods of viability and vigour testing: a critical and appraisal. p. 81-118. In A. S. Basra (ed.) Seed Quality: Basic Mechanisms and Agricultural Implications, CBS Publishers and Distributers, New Delhi, India.

Harris, D., J. K. R. Kumar, and J. Kumar. 2001. On- farm seed priming. Agric. Res. 44: 3-14.

Kaewnaree, P., S. Vichitphan, P. Klanrit, B. Siri, and k. Vichitphan, 2011. Effect of accelerated Aging Process on Seed Quality and Biochemical Chnages in Sweet Pepper (Capsicum annuum L.). Seed Biotechnol. 10(2): 175- 182.

Kalpana, R., and M. K. V. Rao, 1995. On the ageing mechanismin pigeon pea (Cajanus cajan (L.) Mill sp.) seeds. Seed Sci. Technol. 23: 1-9.

Kant, S., S. Pahuja, and R. K. Pannu. 2006. Effect of seed priming on growth and phenology of wheat under late-sown conditions. Tropical Sci. 44: 9-15.

Kaur, S., A. K. Gupta, and N. Kaur. 2005. Seed priming increase crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J. Agron. Crop Sci. 191: 81-87.

KrishnaChaitanya, K. S., S. Keshavkant, and S. C. Naithani. 2000. Changes in total protease activity in dehydrating recalcitrant sal (Shorea robusta) seeds. Silva Fen. 34: 71-77.

Lee, S. S., and J. H. Kim. 2000. Morphological change, sugar content, α-amylase activity of rice seed various priming conditions. Korean J. Crop Sci. 44: 138-142.

Leprince, O., N. M. Atherton, R. Deltour, and G. A. F. Hendry. 1994. The involvement of respiration in free radical processes during loss of desiccation tolerance in germination Zea mays L. An electron paramagnetic resonance study. Plant Physiol. 104: 1333-1339.

MacAdam, J. W., R. Nelson, and E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol. 99: 872-878.

McCue, P., and K. Shetty. 2002. A biochemical analysis of mungbean (Vignar adiata) response tomicrobial polysaccharides and potential phenolicenhancing effects for nutraceuticalappli-cations. Food Bio. 16: 57- 79.

MacDonald, M. B. 1999. Seed deterioration: physiology, repaired and assessment. Seed Sci. Technol. 27: 177-237.

McDonald, M.B. 2000. Seed priming. p. 287-325.  In M. Black and J. D Bewley (ed) Seed technology and its biological basis. Sheffield Academic Press, UK.

Magbanua, Z. V., C. M. D. Moraes, T. D. Brooks, W. P. Williams, and D. S. Luthe. 2007. Is Catalase Activity One of the Factors Associated with Maize Resistance to Aspergillus flavus. Mol. Plant-Microbe Interact. 20(6): 697–706.

Mauch, F., B. Mauch-Mani, C. Gaille, B. Kull, D. Haas, and C. Reimmann. 2001. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. J. Plant. 25(1): 67–77.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.

Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498.

Mohammadi, M., H. Fahimi, and A. Mogar. 2009. Effects of salicylic acid and gibberellic acid on seed germination rate in lentils. (In Persian, with English Abstract.) J. Bio 4:33-44.

Mohanty, N. 2003. Photosynthetic characteristics and enzymatic antioxidant capacity of flag leaf and the grain yield in two cultivars of Triticum aestivum (L). exposed to warmer growth conditions. J. Plant Physiol. 160:71-74.

Moosavi, A., R. Tavakkol-Afshari, F. Sharif-Zadeh, and A. Aynehband. 2009. Effect of seed priming on germination characteristics, polyphenol oxidase, and peroxidase activities of four amaranth cultivars. J. Food Agri. Environ. 7: 353-358.

Patil, M. N. 2010. Biofertilizer effect on growth protein and carbohydrate content in stevia rebaudianavar bertoni. Sci. Technol. 2(10): 42-44.

Ray, M. B., S. Halder, and K. Gupta, 1990. Differential responses of early and late cultivars of rice seeds under accelerated ageing. Seed Sci. Technol. 18: 823-831.

Rouzrokh, M., and K. Ghasemi Golezani. 1998. The effect of aging on seed emergence and yield and yield components of two chickpea cultivars under full irrigation and deficit irrigation. M. Sc. Thesis. Univ. of Tabriz, Iran.

Sairam, R. K., K. V. Rao, and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyteconcentration. Plant Sci. 163: 1037-1046.

Savage, W. E. F., K. C. Dent, and L. J. Clark. 2004. Soak condition and temperature following sowing influence the response of maize (Zea Mays L.). Field Crops Res. 90: 361-374.

Sedghi, M., S. Khomari, and B. Amanpour-Balaneji. 2011. Effect of seed vigor and hormone priming on glyoxylate cycle enzymes activity in Persian silk tree (Albiziajulibrissin Durazz.). World App. Sci. J. 13(3): 541-544.

Sedghi, M., A. Nemati, B. Amanpour-Balaneji, and A. Gholipouri. 2010a. Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. Word App. Sci. J. 11(5): 604-609.

Sedghi, M., A. Nemati, and B. Esmaielpour. 2010. Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emir. J. Food Agric. 22 (2): 130-139.

Slaymarker, D. H., D. A. Navarre, D. Clark, O. D. Pozo, G. B. Martin, and D. F. Klessig. 2002. The Tobacco salicylic acid-banding protein 3 (SABP3) is the chloroplast carbonic anhydras, which exhibition antioxidant activity and plays a role in the hypersensitive defense response. PNAS. 99 (18):11640-11645.

Soltani, E., B. Kamkar, S. Galeshi, and F. Akram Ghaderi. 2008. The effect of seed deterioration on seed reserves depletion and heterotrophic seedling growth of wheat. (In Persian, with English Abstract.) J. Agric. Sci. Natur Resorce 15(1):13-17.

Van Schoonhoven, A., and O. Voysest (eds.) 1991. Common Beans: Research for Crop Improvement. Wallingford: CAB International, in association with CIAT. pp. 980.

Varier, A., A. Kuriakose, and M. Dadlani. 2010. The subcellular basis of seed priming. Current Sci. 99(4): 450-456.

Vitoria, A. P., P. J. Lea, and R. A. Azevedo. 2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochem. 57: 701-710.

Wahid, A., A. Noreen, S. M. A. Basra, S. Gelani, and M. Farooq. 2008. Priming-induced metabolic changes sunflower (Helianthus annuus) achenes improve germination and seedling growth. Bot. stud. 49: 343-350.

Wang, F., R. Wang, W. Jing, and W. Zhang. 2012. Quantitative dissection of lipid degradation in rice seeds during accelerated aging. Plant Growth Regul. 66: 49-58.