نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 گروه مهندسی تولید وژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 عضو هیأت علمی گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان.

4 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

چکیده

فرسودگی و تنش شوری از مهمترین چالش‌های تولید یک گیاه‌چه سالم محسوب می‌شوند. این پژوهش به‌منظور بررسی تأثیر فرسودگی بذر بر ویژگی‌های جوانه‌زنی بذرهای خردل وحشی تحت شرایط تنش شوری انجام پذیرفت. تیمارهای آزمایشی شامل پیری تسریع شد (صفر، 24، 48، 72 و 96 ساعت) و تنش شوری (صفر، 100، 200، 300، 400 و 500 میلی‌مولار) شد. نتایج نشان داد که اثر متقابل تنش شوری و پیری تسریع شده معنی‌دار بود. با افزایش تنش شوری درصد جوانه‌زنی، سرعت جوانه‌زنی و قدرت بذرکاهش معنی‌داری یافت. پیری تسریع شده موجب کاهش فعالیت آنزیم‌ کاتالاز و میزان پروتئین بذر خردل شد. در بذرهای پیر نشده میزان پروتئین 3/1 واحد استاندارد در میلی‌‌گرم پروتئین بود که در اثر 96 ساعت پیری تسریع شده میزان پروتئین با کاهش 92 درصدی به 1/0 واحد استاندارد در میلی‌گرم پروتئین رسید. فعالیت کاتالاز در اثر پیری تسریع شده کاهش یافت، اما فعالیت آنزیم پراکسیداز در اثر پیری تسریع شده 60 درصد افزایش یافت. در بذرهای پیری تسریع شده یافته میزان فعالیت این آنزیم 04/0 واحد استاندارد در میلی-گرم پروتئین بر دقیقه بود که در اثر پیری تسریع شده 96 ساعت میزان پراکسیداز به 11/0 واحد استاندارد در میلی‌گرم پروتئین افزایش یافت. در مقدار اسیدهای چرب روغن بذر پس از پیری تسریع شده تغییراتی مشاهده شد. از بین همه‌ی ترکیبات درصد بهنیتک اسید (C22:0) و یوریسیک اسید (C22:1) در شرایط شاهد به ترتیب 656/0 و 534/38 درصد و در اثر پیری تسریع شده 72 ساعت به 751/0 و 186/40 درصد افزایش یافت.

کلیدواژه‌ها

Aebi, H. 1984. Catalase in vitro. Pp 121–126. In O. K. Nathan, and P. C. Sidney (eds.). Catalase in vitro. In Methods in enzymology. Academic Press, New York.
Agrawal, R. L. 2004. Seed Technology. New Delhi Oxford & IBH, New Delhi.
Balešević-Tubić, S., M. Tatić, V. Dordević, Z. Nikolić, J. Subić, and V. Dukić. 2011. Changes in soybean seeds as affected by accelerated and natural aging. Rom. Biotechnol. Lett. 16:6740–6747.
Bell, J. E., and E. T. Bell. 1988. Proteins and enzymes. Prentice-Hall, Englewood Cliffs, NJ.
Bewley, J. D., and M. Black. 1994. Seeds: Physiology of development and germination. Plenum Press. New York, USA.
Bing, D. J., R. K. Downey, and G. F. W. Rakow. 1996. Assessment of transgene escape from Brassica rapa (B. campestris) into B. nigra or Sinapis arvensis. Plant Breed. 115: 1–4.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
Broun, P., J. Shanklin, E. Whittle, and Ch. Somrville. 1998. Catalytic Plasticity of Fatty Acid Modification Enzymes Underlying Chemical Diversity of Plant Lipids. Science. 282(5392): 1315–1317.
Coolbear, P. 2020. Mechanisms of Seed Deterioration. Pp 223–277. In A. S. Basra (ed.). Seed Quality. CRC Press, New York.
Cutler, R. G. 2005. Oxidative stress and aging: catalase is a longevity determinant enzyme. Rejuvenation Res. 8:138–140. Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA.
Delouche, J. C., and C. C. Baskin. 1973. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci. Technol. 1: 427–452.
Dodd, G. L., and L. A. Donovan. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot. 86: 1146–1153.
Ellis, R. H., and E. H. Roberts. 1981. An investigation into the possible effects of ripeness and repeated threshing on barley seed longevity under six different storage environments. Ann. Bot. 48: 93–96.
Eryilmaz, T., M. K. Yesilyurt, A. Taner, and S. A. Celik. 2015. Prediction of kinematic viscosities of biodiesels derived from edible and non-edible vegetable oils by using artificial neural networks. Arab. J. Sci. Eng. 40: 3745–3758.
Esechie, H. A. 1994. Interaction of salinity and temperature on the germination of sorghum. J. Agron. Crop Sci. 172: 194–199.
Fenner, M. W. 2012. Seed ecology. Chapman and Hall, New York, USA.
Ghassemi-golezani, K., S. Khomari, B. Dalil, and A. Hosseinzadeh-mahootchy. 2010. Effects of seed aging on field performance of winter oilseed rape. J. Food, Agric. Environ. 8: 175–178.
Gidrol, X., A. NOUBHANI, B. Mocquot, A. Fournier, and A. Pradet. 1988. Effect of accelerated aging on protein synthesis in two legume seeds. Plant Physiol. Biochem. 26:281–288.
Gomes, A. R., and T. A. P. Rocha-Santos. 2018. Enzyme Assays. Pp 271–277. In C. Poole, A. Townshend, and M. B. T.-E. of A. S., and E. Miró (eds.) Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, Oxford.
Günes, A., A. Inal, and M. Alpaslan. 1996. Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J. Plant Nutr. 19: 389–396.
Harrington, J. F., and T. T. Kozlowski. 1972. Seed storage and longevity. Seed Biol. 3:145–245. Academic Press, New York.
Hemeda, H. M., and B. P. Klein. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci. 55: 184–185.
Hill, H., K. J. Bradford, J. Cunningham, and A. G. Taylor. 2008. Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hortic. 782: 135–141.
Ibrahim, E. A. 2016. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192: 38–46.
Ikić, I., M. Maričević, S. Tomasović, J. Gunjača, Z. Šatović, and H. Šarčević. 2012. The effect of germination temperature on seed dormancy in Croatian-grown winter wheats. Euphytica 188: 25–34.
ISTA. 2013. International rules for seed testing. International Seed Testing Association, Switzerland.
Jaleel, C. A., R. Gopi, B. Sankar, P. Manivannan, A. Kishorekumar, R. Sridharan, and R. Panneerselvam. 2007. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr. J. Bot. 73: 190–195.
Jamil, M., L. Deog Bae, J. Kwang Yong, M. Ashraf, L. Sheong Chun, and R. Eui Shik. 2006. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J. Cent. Eur. Agric. 7: 273–282.
Jovičič, D., B. M. Popovič, A. M. Jeromela, Z. Nikolič, M. Ignjatov, and D. Miloševič. 2019.  The Interaction Between Salinity Stress and Seed Ageing During Germination of Brassica Napus Seeds . Seed Sci. Technol. 47: 47–52.
Kafi, M., and Z. Rahimi. 2010. Investigte the effects of different salinity levles on seed germination properties of Pursaline (Portulaca oleracea L.). Iranian J. F. Crop. Res. 8: 615–621.(In Persian, with English Abstract)
Kaya, M. D., G. Okçu, M. Atak, Y. Çıkılı, and Ö. Kolsarıcı. 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 24: 291–295.
Kayaçetin, F., B. Efeoğlu, and B. Alizadeh. 2018. Effect of NaCl and PEG-Induced osmotic stress on germination and seedling growth properties in wild mustard (Sinapis arvensis L.). Anadolu Ege Tarımsal Araştırma Enstitüsü Derg. 28: 62–68.
Kayaçetin, F., H. Öğüt, H. Oğuz, İ. Subaşı, and H. Deveci. 2016. Determination of the effect of row spacing, and fall and spring sowing on composition of fatty acid and biodiesel fuel characteristics of mustard (Sinapis arvensis L.). Ciência e Técnica Vitivinícola J. 21: 54–69.
Kibinza, S., J. Bazin, C. Bailly, J. M. Farrant, F. Corbineau, and H. El-Maarouf-Bouteau. 2011. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 181: 309–315.
Kim, B., R. Kwak, H. J. Kwon, V. S. Pham, M. Kim, B. Al-Anzi, G. Lim, and J. Han. 2016. Purification of high salinity brine by multi-stage ion concentration polarization desalination. Sci. Rep. 6: 31850. https://doi.org/10.1038/srep31850.
Koyro, H.-W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 56: 136–146.
Liu, J., Q. Wang, Đ. Karagić, X. Liu, J. Cui, J. Gui, M. Gu, and W. Gao. 2016. Effects of ultrasonication on increased germination and improved seedling growth of aged grass seeds of tall fescue and Russian wildrye. Sci. Rep. 6: 22403. https://doi.org/10.1038/srep22403.
Luzuriaga, A. L., A. Escudero, and F. PérezGarcía. 2006. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46: 163–174.
McDonald, M. B. 2006. Physiological causes of seed deterioration in storage. In M. Bennett (ed.). Symposium of Seed Storage for Temperate and Tropical Regions, Crop Science Society of Americn Annual Meeting, Indianapolis, USA
McDonald, M. B. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27:177–237. International Seed Testing Association, Wageningen?
Metcalfe, L. D., A. A. Schmitz, and J. R. Pelka. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514–515.
Mira, S., E. Estrelles, M. E. González-Benito, and F. Corbineau. 2011. Biochemical changes induced in seeds of Brassicaceae wild species during ageing. Acta Physiol. Plant. 33: 1803–1809.
Moncaleano-Escandon, J., B. C. F. Silva, S. R. S. Silva, J. A. A. Granja, M. C. J. L. Alves, and M. F. Pompelli. 2013. Germination responses of Jatropha curcas L. seeds to storage and aging. Ind. Crops Prod. 44:684–690.
Moosavi, S. A., S. A. Siadat, A. Poshtdar, and F. Direkvand. 2018. Ultrasonic Assisted Seed Priming to Alleviate Aging Damages to Milk Thistle (Silybum marianum) Seeds. Not Sci Biol 10: 275–281.
Ouzouline, M., N. Tahani, C. Demandre, E. El Amrani, G. Benhassaine-Kesri, and H. Serghini Caid. 2009. Effects of accelerated aging upon the lipid composition of seeds from two soft wheat varieties from Morocco. Grasas y. Aceites. 60: 367–374.
Parmoon, G., A. Ebadi, S. Jahanbakhsh, and M. Davari. 2013. The effect of seed priming and accelerated aging on germination and physiochemical changes in milk thistle (Silybum marianum). Not. Sci. Biol. 5: 1–8.
Parmoon, G., A. Ebadi, S. Janbakhsh, and S. A. Moosav. 2015. Effects of seed priming on catalase activity and storage reservoirs of aged milk thistle seeds (Silybum marianum (L.) gaertn). Tarim Bilim. Derg. 21: 363–372.
Qin, P., Z. Kong, X. Liao, and Y. Liu. 2011. Effects of Accelerated Aging on Physiological and Biochemical Characteristics of Waxy and Non-waxy Wheat Seeds. J. Northeast Agric. Univ. (English ed.). 18: 7–12.
Rajaeifar, M. A., A. Akram, B. Ghobadian, S. Rafiee, R. Heijungs, and M. Tabatabaei. 2016. Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy. 106: 87–102.
Rajjou, L., and I. Debeaujon. 2008. Seed longevity : Survival and maintenance of high germination ability of dry seeds. C.R. Biol. 331: 796–805.
Rejeendran, H. V, S. Lakshmi, and S. Ambika. 2018. Changes of enzymes activities in botanical treated aged seed of soybean (Glycine max (L.) Merrill) cv. CO3 seeds. Legum. Res. An Int. J. 41: 73-78.
Rengasamy, P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust. J. Exp. Agric. 42: 351–361.
Roy, B. A., and M. L. Stanton. 1999. Asymmetry of wild mustard, Sinapis arvensis (Brassicaceae), in response to severe physiological stresses. J. Evol. Biol. 12: 440–449.
Savaedy, Z., A. Bakhshande, S. A. Siadat, A. Lotfi Jalalabadi, and S. A. Moosavi. 2018. Study the Effects of Seed Priming to Alleviate the Controlled Deterioration Damage on Fennel Flower seed (Nigella sativa L.). Master Thesis. Agir. Sci. and Nat. Res. University of Khuzestan. Iran. (In Persian, with English Abstract)
Sedghi, M., A. Nemati, B. Amanpour-Balaneji, and A. Gholipouri. 2010. Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. World Appl. Sci. J. 11: 604–609.
Siadat, S. A., A. Moosavi, and M. S. Zadeh. 2012. Effects of seed priming on antioxidant activity and germination characteristics of Maize seeds under different ageing treatment. Res. J. Seed Sci. 5.
Soltani, E., S. Galeshi, B. Kamkar, and F. Akramghaderi. 2009. The Effect of Seed Aging on the Seedling Growth as Affected by. Res. J. Environ. Sci. 3: 184–192.
Sosa, L., A. Llanes, H. Reinoso, M. Reginato, and V. Luna. 2005. Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann. Bot. 96: 261–267.
Stewart, R. R., and J. D. Bewley. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65: 245–248.
Tobe, K., X. Li, and K. Omasa. 2004. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Sci. Res. 14: 345–353.
Ventura, L., M. Donà, A. Macovei, D. Carbonera, A. Buttafava, A. Mondoni, G. Rossi, and A. Balestrazzi. 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiol. Biochem. 60: 196–206.
Walters, C., D. Ballesteros, and V. A. Vertucci. 2010. Structural mechanics of seed deterioration: Standing the test of time. Plant Sci. 179: 565–573.
Warwick, S. I., H. J. Beckie, A. G. Thomas, and T. McDonald. 2000. The biology of Canadian weeds. 8. Sinapis arvensis. L. (updated). Can. J. Plant Sci. 80: 939–961.
Zhang, X. K., G. T. Yang, L. Chen, J. M. Yin, Z. L. Tang, and J. N. Li. 2006. Physiological differences between yellow-seeded and black-seeded rapeseed (Brassica napus L.) with different testa characteristics during artificial ageing. Seed Sci. Technol. 34: 373–381.