ارزیابی اثر میکروارگانیسم ها بر شاخص های جوانه زنی، رشدی و فیزیولوژیکی بذر کدوی تخم کاغذی (Cucurbita pepo var.styriaca) تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شاهد

2 استادیار گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی و مرکز تحقیقات گیاهان دارویی دانشگاه شاهد تهران

چکیده

به‌منظور بررسی تأثیر بیوپرایمینگ بر شاخص‌های جوانه‌زنی، رشدی و فیزیولوژیکی گیاه کدوی تخم کاغذی تحت تنش شوری آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. تیمار‌های آزمایشی شامل چهار سطح شوری (صفر، 40، 80 و 120 میلی‌مولار کلرید سدیم) و هشت سطح تیمار بیوپرایمینگ (عدم تلقیح، تلقیح با قارچ Trichoderma harzianum، تلقیح با کود زیستی ازتوبارور1، تلقیح با کود زیستی فسفاته بارور2، تلقیح با قارچ و کود زیستی ازتوبارور1، تلقیح با قارچ و کود زیستی فسفاته بارور2، تلقیح با کود زیستی ازتوبارور1 و کود زیستی فسفاته بارور2، تلقیح با تلفیقی از قارچ و هر دو کود زیستی) بودند. اثر متقابل بیوپرایمینگ و شوری بر فعالیت آنزیم‌های آنتی-اکسیدانت و شاخص‌های رشدی و جوانه‌زنی به غیر از شاخص وزنی بنیه بذر و وزن خشک گیاهچه معنی-دار بود. تیمار کود زیستی فسفاته بیشترین تأثیر مثبت بر درصد جوانه‌زنی با افزایش شوری را داشت. در تیمار تلفیق قارچ با کود زیستی فسفاته با افزایش شوری ضریب جوانه‌زنی کاهش کمتری یافت. سطوح پایین شوری بر شاخص‌های رشدی تأثیر مثبت داشت و باعث افزایش این شاخص‌ها گردید. وزن خشک با افزایش سطح شوری کاهش یافت و در تیمار قارچ بیشترین مقدار را دارا بود. با افزایش شوری میزان آنتی‌اکسیدانت‌ها افزایش یافت و استفاده از تیمارهای بیوپرایمینگ میزان این آنزیم‌ها را نسبت به تیمار شاهد بیشتر افزایش داد که نشان از مؤثر بودن این تیمارها در تعدیل اثر شوری به وسیله افزایش آنزیم می‌باشد. استفاده از میکروارگانیسم‌ها با افزایش بیشتر آنزیم‌های آنتی‌اکسیدانت نسبت به شاهد سبب کاهش اثرات منفی تنش شوری شد.

کلیدواژه‌ها


Amor, N. B., A. Jimenez, W. Megdiche, M. Lundqvist, F. Sevilla, and C. Abdelly. 2006. Response of antioxidant system to NaCl stress in the halophyte Cakile maritime. Physiol. Plant. 126: 446-157.
Aneja, M., T. J. Gianfagna, and P. K. Hebbar. 2005. Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiol. Mol. Plant. Pathol. 67: 304-307.
Aroiee, H, and R. Omidbaigi. 2004. Effect of nitrogen fertilizer on productivity medicinal pumpkin. Acta Hortic. 629: 415-419.
Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27: 84-93.
Ashrafuzzaman, S. M., F. A. Hossen, I. M. Razi, H. M. Anamul, I. M. Zahurul, S. M. Shahidullah, and M. Sariah. 2009. Efficiency of plant growth promoting rhizobacteria for the enhancement of rice growth. Afr. J. Biotechnol. 8: 1247-1252.
Baby, J, and D. Jini. 2011. Development of salt stress tolerance by gene manipulation of antioxidant enzymes. As. J. Agric. Res. 5: 17-27.
Baltruschat, H., J. Fodor, B. D. Harrach, E. Niemczyk, B. Barna, and G. Gullner. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 180: 501-510.
Beauchamp, C, and I. Fridovic. 1971. Superoxide dismutases: improved assay and an assay predictable to acrylamide gels. Anal. Biochem. 44(1): 276-287.
Benitez, T., A. M. Rincon, M. C. Limon, and A. C. Codon. 2004. Biocontrol mechanism of Tricoderma strains. Int. Microbiol. 7: 249- 260.
Berg, G. 2009. Plant microbe interaction promoting plant growth and health: perspective for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18.
Bhattacharyya, P.N, and D. K. Jha. 2012. Plant growth promoting rhizobacteria (PGPR). Emergence in agriculture. World. J. Microbiol. Biotechnol. 28: 1327-50.
Bianco, C, and R. Defez. 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid overproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60: 3097-3107.
Chance, B, and A. C. Maehly. 1995. Assay of catalase and peroxidase. PP. 764-765 In: Culuwic, S. P., Kapland, N.O (Eds). Method in enzymology. Acad. Press, New York.
Cuevas, C. 2006. Soil inoculation with Trichoderma pseudokoningii rifai enhances yield of rice. Philipp. J. Sci. 135(1): 31-37.
De, R, and R. K. Kar. 1995. Seed germination and seedling growth of mung been (Vigna radiate) under water stress induced by PEG-6000. Seed Sci. Technol. 23: 301-308.
Dhindsa, R.S., P. Plumb-Dhindsa, and T. A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101.
Egamberdieva, D, and Z. Kucharova. 2009. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol. Fertil. Soils. 45: 563-571.
Ehteshamnia, A. 2006. Effect of salinity on seedling growth indices of 10 medical plants. 3th Medicinal Plant Sympsium. Shahid Beheshti University. (In Persian)
Ellis, R.H, and E. H. Roberts. 1981. The quantification of aging and survival in orthodox seeds. SeedSci. Technol. 9: 373-409.
Eslami, V., M. A. Behdani, and S. Ali. 2009. Effect of salinity on germination and early seedling growth of canola cultivars. Environ.Str.Agric. Sci. 1(1): 45-110.
Fallahi, J., M. T. Ebadi, and R. Ghorbani. 2009. The effect of salinity and drought stresses on germination and seedling growth of clary. Environ. Str. Agric. Sci. 1(1): 57-67. (In Persian)
Fu, C.L., H. SHI, and Q. H. LI. 2006. A review on farmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr. 61: 73-80.
Glick, BR., Z. Cheng, J. Czarny, J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-39.
Grattan, S. R, and C. M. Grieve. 1999. Mineral nutrient acquisition and response by plants growth in saline environment. Pp 203-229. In M. Pessarakli (ed.). Handbook of Pant and Crop Stress. 2nd edition. Marcel Dekker, New York.
Gravel, V., H. Antouna, and R. J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39: 1968-1977.
Grover, M., S. Z. Ali, V. Sandhya, A. Rasul, and B. Yenkateswarlu. 2010. Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J. Microbiol. Biotechnol. 27: 1231-1240.
Han, H. S, and K. D. Lee. 2006. Effect of inoculation with phosphate and potassium solubilization bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil. Environ. 52: 130-136.
Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Rev. 2: 43-56.
Hayat, R., S. Ali, U. Amara, R. Khalid, I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60: 579-98.
Hoogenboom, G, and C. M. Peterson. 1987. Shoot growth rate of soybean as affected by drought stress. Agron. J. 79: 598-607.
ISTA, 2010. International rules for seed testing. Supp. Seed Sci. Technol. 21: 1-288.
Kaymak, Dc. 2010. Potential of PGPR in agricultural innovations. Pp 45-79. In D .K. Maheshwari (ed.). Plant growth and health promoting bacteria. Springer, Berlin; Heidelberg, Germany.
Krishna, A., C. R. Patil, S. M. Raghavendra, and M. D. Jakati. 2008. Effect of bio-fertilizers on seed germination and seedling quality of medicinal plants. Kar. J. Agric. Sci. 21: 588-590.
Lauchli, A, and S. R. Grattan. 2007. Plant growth and development under salinity stress. Pp 1-32. In M. A. Jenks, P. M. Hasegawa, S. M. Jain (eds.). Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer Verlag, Dordrecht.
Makizadeh Tafti, M., S. Nasrolahzadeh, S. Zehtab Salmasi, M. Chaechi, and K. Khavazi. 2012. Effect of bio-fertilizers, and organic chemical on quantitative characterization of basil (Ocimum bsilicum L). J. Sus. Agric. Prod. 22(1): 1-12.
Manaffee, W. F, and J. W. Kloepper. 1994. Applications of plant growth promoting rhizobacteria in sustainable agriculture. Pp. 23-31. In C. E. Pankburst, B. M. Double, V. V. S. R. Gupta, and P. R. Grace (eds.). Soil biota management in sustainable farming system. CSIRO, Pub. East Melbourn, Australia.
Markus, W., H. Junge, and W. H. Schnitzler. 2004. Bacillus subtilis as growth promoter in hydroponically grown tomatoes under saline condition. Acta Hortic.10: 363-370.
Massood, A., N. A. Shah, M. Zeeshan, and G. Abraham. 2006. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ. Exp. Bot. 85: 216-222.
Mastouri, F., T. Bjorkman, and G. E. Harman. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic and physiologic stresses in germination seeds and seedlings. Biol. Control. 100(11): 1213-1221.
Mayak, S., T. T. Bernard, and R. Glick. 2004. Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42:565-572.
Mhadhbi, H., V. Fotopoulos, P. V. Mylona, M. Jebara, M. E. Aouani, and A. N. Polidoros. 2011. Antioxidant gene-enzyme responses in Medicago Truncatula genotypes with different degree of sensitivity to salinity. Plant Physiol. 141: 201-214.
Mittova, V., M. Guy, M. Tal, and M. Volokita. 2004. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennelli. J. Exp. Bot. 55: 1105-1113.
Mohammadi, R., M. Olamaee, R. Ghorbani, and M. R. Chakeralhoseini. 2010. Effect of urea fertilizer, organic matter and Plant Growth Promoting Rhizobacteria on Nitrogen uptake and yield ow wheat (Triticum aestivum C.V Alvand). J. Plant. Prod. 17: 77-92.
Mohammadkhani, N, and R. Heidari. 2007. Effects of drought stress on protective enzyme activities and lipid peroxidation in two maize cultivars. Pak. J. Biol. Sci. 10(21): 3835-3840.
Mujeeb, U.R., U. A. Soomro, U. H. Mohammad Zadeh, and G. Shereen. 2008. World J. Agric. Sci. 4(3): 398-403.
Nakano, Y, and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant. Cell Physiol. 22: 867-880.
Omami, E. N. 2005. Response of Amarantha to salinity stress. Ph.D Thesis. University of Pretoria.
Osiewacz, H.D. 2002. Molecular biology of fungal development. Marcel Dekker, New York.
Parida, A.K, and A. B.  Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60: 324-349.
Rana, K., U. Kamile, A. Koksal, and N. O. Ahmet. 2013. The influence of salinity on seedling growth of some pumpkin varieties used as rootstock. Not. Bot. Horti Agro. 41(1): 219-225.
Scotl, S. J., R. A. Jones, and W. A. Williams. 1984. Review of data analysis methods for seed germination. Crop Sci. 24(6):1192-1199.
Shaharoona, B., M. Arshad, Z. A. Zahir, and A. Khalid. 2006. Performance of Pseudomonas spp. Containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the present of nitrogen fertilizer. Soil Biol. Biochem. 38: 2971-2975.
Shannon, M. C, and C. M. Grieve. 1999. Tolerance of vegetable crops to salinity. Sci. Hortic. 78: 5-38.
Sharbatkhari, M., S. Galeshi, Z. S. Shobbar, B. Nakhod, and M.  Shahbazi. 2013. Assessment of agro-physiological, traits for salt tolerance in drought tolerant wheat genotypes. Int. J. Plant Prod. 7(3): 437-448.
Shen, B., R. G. Jensen, and H. J. Bohnert. 1997. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115: 527-532.
Siringam, K., N. Juntawong, S. Chaum, and C. Kirdmanee. 2011. Salt stress induce ion accumulation, ion homeostasis, membrane injury and sugar contents in salt- sensitive rice (Oryza sativa L.) roots under isoosmatic condition. Afr. J. Biotechnol. 10 (8): 1340-1346.
Soltani, A., S. Galeshi, E. Zeinali, and N. Latifi. 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.
Soltani, A., M. Gholipoor, and E. Zeinali. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ. Exp. Bot. 55: 195-200.
Sorkhi Lalelou, F., J. Shafagh-Kolvanagh, and M. Fateh. 2013. Effect of salinity on germination indexes of medicinal plant naked pumpkin (Cucurbita pepo). Int. J. Agric. Crop Sci. 5(13): 1424-1426.
Stephanie, E.B., V. P. Svoboda, A. T. Paul, and W. V. I. Marc. 2005. Controlled drought affects morphology and anatomy of Salvia solendens. Soc. Hortic. Sci. 130(5): 775-781.
Turan, M., M. Gulluce, R. Cakmak, and F. Sahin. 2013. Effect of plant growth promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J. Plant Nutr. 36: 731-748.
Werner, J.E, and R. R. Finkelestein. 1995. Arabidopsis mutants with reduced response to NaCl and osmotic sresses. Plant Physiol. 93: 659-666.
Yadeghari, M., G. H. N. Farahani, and Z. Mosadeghzad. 2012. Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr. J. Agric. Res. 7: 4716-4723.
Yasar, F., S. Kusvuran, and S. Ellialtioglu. 2006. Determination of anti- oxidant activities in some melon (Cucumis melo L.) Varieties and cultivar under Salt stress. J. Hortic. Sci. Biotechnol. 81(4): 627-630.
Zahir, Z.A., M. Arshad, W. T. Frankenberger. 2004. Plant growth promoting rhizobacteria: applications and prespectives in agriculture. Adv. Agron. 81: 97-168.
Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt stresses cucumber (Cucumis sativus L.). Plant Sci. 167: 527-533.