نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکترای تخصصی فیزیولوژی گیاهان زراعی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استاد گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 دانشجوی دکترای تخصصی فیزیولوژی گیاهان زراعی دانشگاه فردوسی مشهد، مشهد

چکیده

سویا از مهم‌ترین گیاهان دانه روغنی جهان است که از مشکلات تولید آن کاهش قوه نامیه و بنیه بذر طی مدت نگهداری و پیش از کشت می‌باشد. به منظور تعیین اثر اتیلن و اسید سالیسیلیک بر بهبود بذر زوال یافته سویا، طی این تحقیق بذور سویا در معرض پیری تسریع شده به مدت صفر، 6 ، 10 روز و پیری طبیعی به مدت 6 ماه قرار گرفتند. بذور پس از پیری با اسید سالیسیلیک با غلظت  50 میکرو مولار و ACC (پیش ماده اتیلن) با غلظت 10 میکرو مولار به مدت 6 ساعت در دمای 25 درجه سانتی‌گراد تیمار شدند. همچنین دسته‌ای بذور پس از آزمون پیری تسریع شده و طبیعی بدون هیچ تیماری به عنوان شاهد (بذر خشک) استفاده شدند. درصد جوانه‌زنی، هدایت الکتریکی و همچنین بیان ژن‌های AMY1 ، BMY1  در بذور خشک و همچنین طی 6 و 12 ساعت تحت اثر آب، اسید سالیسیلیک و ACC به روش qRT- PCR مورد بررسی قرار گرفت. با افزایش پیری درصد جوانه‌زنی کاهش و هدایت الکتریکی افزایش یافت. بیشترین میزان جوانه‌زنی در بذور خشک غیر پیر (95 درصد) بدست آمد. از طرفی ACC و اسید سالیسیلیک نتوانستند جوانه‌زنی بذور 10 روز پیری را از صفر درصد تغییر دهند. همچنین بیشترین میزان هدایت الکتریکی (µScm-1gr-1 53) در تیمار پیری تسریع شده 10 روز و هورمون SA بدست آمد. بیان ژن AMY1 و BMY1 با افزایش سطوح پیری افزایش یافت. هورمون اسید سالیسیلیک و ACC اثرات متفاوتی را بر صفات اندازه‌گیری شده داشتند. در بذور غیر پیر اسید سالیسیلیک سبب کاهش بیان AMY1 شد که نشان می‌دهد اسید سالیسیلیک در بذور غیر پیر همانند عامل تنش‌زا عمل می‌کند. میزان بیان ژن AMY1در بذر صفر روز پیر به‌میزان 1/8 بود که این میزان در بذر 10 روز پیری 3/3 بود. در مجموع می‌توان گفت پیری سبب اختلال در صفات فیزیولوژیکی (مانند هدایت الکتریکی) بذر می‌گردد و اسید سالیسیلیک و اتیلن نمی‌توانند سبب بهبود زوال بذر سویا شوند.

کلیدواژه‌ها

Abeles, F.B.1986. Role of ethylene in Lactuca sativa cv ‘Grand Rapids’ seed germination. Plant Physiol. 81:780–787.
Beaudoin, N., C. Serizet., F. Gosti, and J. Giraudat. 2000. Interactions between Abscisic acid and ethylene signaling cascades. Plant Cell. 12: 1103– 1115.
Bilecka, B., and J. Kepczynski. 2010. Germination, α-, β- Amylase and total dehydrogenase activities of Amaranthus caudatus seed under water stress in the presence of ethephon or gibberellin A3. ACTA Biol. Cracov Bot. 52(1): 7-12.
Chang, S., J. Puryear, and K. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. 11: 113-116.
El-Mergawi, R., and M. Abdel-Wahed. 2007. Diversity in salicylic acid effects on growth criteria and different indoleacetic acid forms among faba bean and maize. IPGSA., 19th Annu. Meet., Puerto Vallarta, Mexico July. 21- 25.
Forcella, F., R. L. Benech Arnold, R. Sanchez, and C. M. Ghersa. 2000. Modeling seedling emergence. Field Crop Res. 67(2): 123-139.
Gharib F. A., and A. Z. Hegazi. 2010. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. J. Am. Sci. 6(10): 675- 683.
Gorecki, R.J., H. Ashino, S. Satoh, and Y. Esashi. 1991. Ethylene production in pea and cocklebur seeds of differing vigour. J. Exp. Bot. 42: 407–414.
Gubler, F., D. Raventos, M. Keys, R. Watts, J. Mundy, and J. Jacobsen. 1999. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant Physiol. 17:1–3.
Hampton, J. G., and D. M. Tekrony. 2005. Handbook of vigour test methods (3rd.ed). ISTA. 70-72.
International Seed Testing Association. 2009. International Rules for SeedTesting. Zurichtstr.50. CH 8303, Bassersdorf, Switzerland, Edition 2009/1.
Khan, A.A. 1994. ACC-derived ethylene production, a sensitive test for seed vigor. J. Am. Soc. Hortic. Sci. 119: 1083–1090.
Kozarewa, I., D.J. Cantliffe, R.T. Nagata, and P. J. Stoffella. 2006.  High maturation temperature of lettuce seeds during development increased ethylene production and germination at elevated temperatures. J. Am. Soc. Hortic. Sci. 131: 564–570.
Kunkel, B.N. and D.M. Brooks. 2002. Cross talk between signalling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325–331.
Lee, G.J., X. Wu, J.G. Shannon, D.A. Sleper, and H.T. Nguyen. 2007. Genome mapping and molecular breeding in plants. V.2, Pp 21-53. In C. Kole (ed.). JCO. Springer, Berlin, Heidelberg.
Marshal, A. H., and D. N. Lewis. 2004. Influence of seed storage conditions on seedling emergence, seedling growth and dry matter production of temperature forage grasses. Seed Sci. Technol. 32(2): 493-501.
Matilla, A. J. 2000. Ethylene in seed formation and germination. Seed Sci. Res.10: 111-126.
McDonald, M. B. 1999. Seed deterioration: Physiology, repair and assessment. Seed Sci. Technol. 27(1):177-237.
McDonald, M.B. 2004. Orthodox seed deterioration and its repair. Pp 273–304. In R.L. Benech-Arnold, and R.A. Sanchez (eds.). Handbook of Seed Physiology Applications to Agriculture. Food Products Press, New York.
Miransari, M., and D. L. Smith. 2013. Plant hormones and seed germination. Environ. Exp. Bot. 99: 110-121.
Murray F., P. Matthews, J. Jacobsen, and F. Gubler. 2006. Increased expression of HvGAMYB in transgenic barley increases hydrolytic enzyme production by aleurone cells in response to gibberellins. J. Cereal Sci. 44:317–322.
Nandi,S.,G. Das, and S. Sen-Mandi. 1995. β-Amylase activity as an index for germination potential in rice. Ann Bot. 75: 463–467.
Okamoto, K., and T. Akazawa. 1980. Enzymatic mechanism of starch breakdown in germinating rice seeds. Plant Physiol. 65:81–84.
Pandey, K.K. 1988. Priming induced repair in French bean seeds. Seed Sci Technol. 16: 527-532.
Panobianco, M., and R. P. Vieira. 2007. Electrical conductivity and deterioration of soybean seeds exposed to different storage conditions. Rev. Bras. Sementes. 29(2): 97-105.
Pierik, R., D. Tholen, H. Poorter, J.W. E. Visser, and A.C.J. L. Voesenek. 2006. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11(4): 176- 183.
Rajjou, L., M. Belghazi, R. Huguet, C. Robin, A. Moreau, C. Job, andD. Job. 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 141: 910–923.
Rivas-San Vicente, M., and J. Javier Plasencia. 2011. Salicylic acid beyond defence: its role in plant growth and Development. J. Exp. Bot. 62(10): 3321–3338.
Sharma, S., P. Virdi, S. Gambhir, and S. K. Munshi. 2005. Changes in soluble sugar content and antioxidant enzymes in soybean seeds stored under different storage conditions. J. Agric. Biochem. 18:9–12.
Shelar, V. R., R. S. Shaikh, and A. S. Nikam. 2008. Soybean seed quality during storage: a review. Agric. Rev. 29(2): 125-131.
Siriwitayawan, G., R. L. Geneve, and A. B. Dowine. 2007. Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci. Res. 13: 303-314.
Van der Maarel, M.J.E.C., B. Van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen.  2002. Properties and applications of starch converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137–155.
Vriezen, W.H., Z. Y. Zhou, and D. Van Der Straeten. 2003. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann Bot. 91: 263–270.
Yamasaki, Y. 2003. Amylase in germinating millet seeds. Phytochemistry. 64: 935–939.