بهبود پاسخ دما-رطوبتی بذر ذرت تحت تنش خشکی با استفاده از آبسیزیک اسید، جیبرلیک اسید و سالیسیلیک اسید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی دانشگاه فردوسی مشهد

2 استاد

3 استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

به منظور ارزیابی تاثیر دما، خشکی و پرایمینگ بر شاخص‌های درصد و سرعت جوانه‌زنی بذر ذرت، آزمایشی به صورت فاکتوریل بر پایه طرح آماری کاملاً تصادفی با چهار تکرار انجام شد. تیمارها شامل سطوح دمایی (5، 10، 15، 20، 25، 30، 35 و 45 درجه سلسیوس)، پتانسیل خشکی (0/0، 4/0-، 8/0- و 2/1- مگاپاسکال) و اعمال پرایمینگ (شاهد، هیدروپرایمینگ، آبسیزیک اسید، جیبرلیک اسید و سالیسیلیک اسید) بودند. بنا بر نتایج این پژوهش، افزایش دما و خشکی سبب کاهش پارامترهای درصد و سرعت جوانه‌زنی شد؛ به طوری که در پتانسیل‌های کمتر از 8/0- مگاپاسکال در تمامی سطوح دما و خشکی، کاهش معناداری در شاخص های ذکر شده مشاهده گردید. در دمای 35 درجه سلسیوس، درصد جوانه‌زنی در شرایط بدون اعمال پرایمینگ از 94 به 36 درصد (خشکی2/1- مگاپاسکال) کاهش یافت. تحت این شرایط، تیمار جیبرلیک اسید سبب بهبود جوانه‌زنی شد. برای تعیین دماهای کاردینال ذرت از مدل‌های رگرسیونی (دندان- مانند، دوتکه‌ای و بتا) استفاده شد. طبق نتایج آزمایش، مدل دندان- مانند، به عنوان بهترین مدل ارزیابی شد و بر اساس آن، دمای پایه، مطلوب 1، مطلوب2 و حداکثر به ترتیب 51/9، 12/24، 35 و 6/44 درجه سلسیوس برآورد گردید. به منظور بررسی تاثیر دما و پتانسیل آب بر جوانه‌زنی بذر تحت شرایط خشکی از مدل رگرسیونی غیر خطی هیدروترمال تایم استفاده شد. با توجه به آن که افزایش مقدار انحراف معیار از دمای پایه نشان دهنده توانایی جوانه‌زنی بذر در پتانسیل‌های متفاوت اسمزی است، هیدروپرایمینگ، جیبرلیک اسید و سالیسیلیک اسید سبب افزایش این مقدار نسبت به تیمار بدون پرایمینگ شدند.

کلیدواژه‌ها


Abdellaoui, R., F. Boughalleb, D. Zayoud, M. Neffati, and E. Bakhshandeh, 2019. Quantification of Retama raetam seed germination response to temperature and water potential using hydrothermal time concept. Environ. Exp. Bot. 157: 211-216.
Alvarado, V., and K. J. Bradford, 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25: 1061-1069.
Alvarado, V., and K. J. Bradford, 2005. Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Sci. Res. 15: 77-88.
Atashi, S., E. Bakhshandeh, Z. Zeinali, E. Yassari., and J. A. Teixeira da Silva, 2014. Modeling seed germination in Melisa officinalis L. in response to temperature and water potential. Acta Physiol. Plant. 36: 605-611.
Barooti, S., R. Tavakkol Afshari, N. Majnon Hoseini, and A. Hashemi, 2019. Evaluation of germination and determination of cardinal temperatures of Cannabis sativa by using regression models. Seed Sci. Technol. 7: 127-136. (In Persian, with English Abstract)
Bidgoly, R.O., H. Balouchi, E. Soltani, and A. Moradi, 2018. Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Ind. Crop. Prod. 113: 121-127.
Bijanzadeh, E., R. Naderi, and T.P. Egan, 2019. Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. J. Plant Nutr. 42: 1483-1495.
Bradford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50: 248-260.
Carter, E.K., J. Melkonian, S. Steinschneider., and S.J. Riha, 2018. Rainfed maize yield response to management and climate covariability at large spatial scales. Agric. Forest Meteorol. 256: 242-252.
Cochrane, A. 2016. Can sensitivity to temperature during germination help predict global warming vulnerability? Seed Sci. Res. 26: 14-29.
Deihimfard, R., S. Nazari, and Y. Qorani, 2018. Estimation of cardinal temperatures of Lepyrodiclis holosteoides using regression models. Seed Sci. Technol. 6: 107-117. (In Persian, with English Abstract)
Dianat, M., M.J. Saharkhiz, and I. Tavassolian, 2016. Salicylic acid mitigates drought stress in Lippia citriodora L.: Effects on biochemical traits and essential oil yield. Biocatal. Agric. Biotechnol. 8: 286-293.
Dražić, G., and N. Mihailović. 2009. Salicylic acid modulates accumulation of Cd in seedlings of Cd-tolerant and Cd-susceptible soybean genotypes. Arch. Biol. Sci. 61: 431–439.
Eberle, C.A., F. Forcella, R. Gesch, D. Peterson, and J. Eklund. 2014. Seed germination of calendula in response to temperature. Ind. Crop. Prod. 52: 199-204.
Edalat, M., and S.A. Kazemeini, 2014. Estimation of cardinal temperatures for seedling emergence in corn. Aust. J. Crop Sci. 8: 1072-1078.
Ellis, R.H., and E.H. Roberts, 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9: 373-409.
Fallahi, H.R., M. Aghhavani-Shajari, M. Mohammadi, R. Kadkhodaei-Barkook., and E. Zareei, 2017. Predicting of flixweed (Descurainia sophia L.) Webb ex Prantl) germination response to temperature using regression models. J. Appl. Res. Med. Aromat. Plant. 6: 131-134.
Fallahi, H.R., M. Mohammadi, M. Aghhavani-Shajari., and F. Ranjbar, 2015. Determination of germination cardinal temperatures in two basil (Ocimum basilicum L.) cultivars using non-linear regression models. J. Appl. Res. Med. Aromat. Plant. 2: 140-145.
Farooq, M., M. Hussain, A. Wakeel., and K.H. Siddique, 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35: 461-481.
Forieri, I., U. Hildebrandt, and M. Rostas, 2016. Salinity stress effects on direct and indirect defence metabolites in maize. Environ. Exp. Bot. 122: 68-77.
Gabaldon-Leal, C., H. Webber, M.E. Otegui, G.A. Slafer,R.A. Ordonez, T.Gaiser, I.J. Lorite, M. Ruiz-Ramos., and F. Ewert, 2016. Modelling the impact of heat stress on maize yield formation. Field Crop. Res. 198: 226-237.
Hardegree, S.P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann. Bot. 97: 1115-1125.
Hashemi, A., R. Tavakkol Afshari., and L. Tabrizi, 2017. Investigation of germination characteristics and determining the important temperatures of seedlings (Plantago ovate). Field Crop Sci. 47: 1-7. (In Persian, with English Abstract)
Hatfield, J.L., L. Wright-Morton, and B. Hall, 2018. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Clim. Change. 146: 263-275.
Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192:
38-46.
Iqbal, M., and M. Ashraf. 2013. Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 86: 76-85.
Jumrani, K., and V.S. Bhatia, 2018. Combined effect of high temperature and water-deficit stress imposed at vegetative and reproductive stages on seed quality in soybean. Indian J. Plant Physiol. 23: 227-244.
Kaur, S., A.K. Gupta, and N. Kaur. 2000. Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regul. 30: 61-70.
Llanes, A., A. Andrade, O. Masciarelli, S. Alemano, and V. Luna. 2016. Drought and salinity alter endogenous hormonal profiles at the seed germination phase. Seed Sci. Res. 26: 1-13.
Michel, B.E., and M.R Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51: 914-916.
Nozarpour, E., R. Tavakkol Afshari, E. Soltani., and N. Majnoun Hosseini. 2017. Determination of cardinal temperatures of lemon balm (Melissa officinalis L.) seeds in response to temperatures and water potentials. Field Crop Sci. 47: 341-351. (In Persian, with English Abstract)
Ordonez-Salanueva, C.A., C.E. Seal, H.W. Pritchard, A. Orozco-Segovia,  M. Canales-Martínez, and C.M. Flores-Ortiz, 2015. Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: effect of projected soil temperature increase and nurse interaction on germination timing. J. Arid Environ. 115: 73-80.
Ouda, S.A., and A.E.H. Zohry, 2018. Cropping Pattern to Face Climate Change Stress. In Cropping Pattern Modification to Overcome Abiotic Stresses. Springer, Cham. 89-102.
Parmoon, G., S.A. Moosavi, H. Akbari., and A. Ebadi, 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. Crop J. 3: 145-51.
Patane, C., A. Saita, A. Tubeileh, S.L. Cosentino., and V, Cavallaro, 2016. Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta physiol. Plant. 38: 115.
Radić, V., M. Vujaković, and A. Marjanović-Jeromela, 2007. Influence of drought on seedling development in different corn genotypes (Zea mays L.). J. Agric. Sci. 52: 131-136.
Sadeghi, H., and Z. Robati, 2015. Response of Cichorium intybus L. to eight seed priming methods under osmotic stress conditions. Biocatal. Agric. Biotechnol. 4: 443-448.
Savvides, A., S. Ali, M.  Tester, and V. Fotopoulos, 2016. Chemical priming of plants against multiple abiotic stresses: mission possible? Trend. Plant Sci. 21: 329-340.
Shi, Y., Y. Zhang, H. Yao, J. Wu, H. Sun, and H. Gong, 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol. Biochem. 78: 27-36.
Soltani A., and T.R. Sinclair. 2012. Modeling physiology of crop development, growth and yield. CABi, Cambridge, UK.
Szalai, G., M. Pál, T. Árendás, and T. Janda. 2016. Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res. Commun. 44: 537–548.
Tesfaye, K., P.H. Zaidi, S. Gbegbelegbe, C. Boeber, F. Getaneh, K. Seetharam, O, Erenstein, and C. Stirling, 2017. Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor. Appl. Climatol. 130: 959-70.
Tigabu, M., and P.C. Oden, 2001. Effect of scarification, gibberellic acid and temperature on seed germination of two multipurpose Albizia species from Ethiopia. Seed Sci. Technol. 29: 11-20.
Tsegay, B.A. and M. Andargie, 2018. Seed Priming with Gibberellic Acid (GA3) Alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L. J. Crop Sci. Biotechnol. 21: 261-267.
Wang, N., E. Wang, J. Wang, , J. Zhang, B. Zheng, Y. Huang., and M. Tan, 2018. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric. Forest Meteorol. 250: 319-329.
Wei, L.X., B.S. Lv, M.M. Wang, H.Y. Ma, H.Y. Yang, X.L. Liu, C.J. Jiang, and Z.W. Liang, 2015. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol. Biochem. 90: 50-57.
Yasari, E, M. Miri, S. Atashi., and M. Jamali, 2019.  Application of hydrothermal time model to determine the cardinal temperatures for seed germination in crops (A case study; velvetleaf (Abutilon theophrasti med.)). Seed Sci. Technol. 7: 85-94. (In Persian, with English Abstract)
Zhang, J., F. Jiang, P. Yang, J. Li, G. Yan., and L. Hu,  2015. Responses of canola (Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. Acta Physiol. Plant. 37: 7.
Zhang, P., J. Zhang., and M. Chen, 2017. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manag. 83:8-31.
Zheng, M., Y. Tao, S. Hussain, Q. Jiang, S. Peng, J. Huang, K. Cui, and L. Nie, 2016. Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. J. Plant Growth Regul. 78: 167-178.