بهبود جوانه‌زنی، رشد و خصوصیات بیوشیمیایی گیاهچه‌های ذرت هیبرید سینگل کراس 704 با کاربرد نانوذرات نقره سنتز شده از گیاه رازیانه (Foeniculum vulgare)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

به‌منظور ارزیابی تأثیر نانوذرات نقره سنتز شده از رازیانه بر جوانه‌زنی بذر، رشد و خصوصیات بیوشیمیایی گیاهچه‌های ذرت هیبرید سینگل کراس 704، آزمایشی به‌صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی با سه تکرار در دانشگاه محقق اردبیلی در سال 1400 اجرا شد. تیمار‌های آزمایش شامل غلظت‌های مختلف نانوذرات نقره (صفر، 001/0، 1/0، 25/0 و 75/0 میلی‌گرم در لیتر) و روش کاربرد (پیش‌تیمار بذر و افزودن به بستر کشت) بود. نتایج نشان داد که در هر دو روش کاربرد نانوذره، با کاربرد غلظت‌های مختلف نانوذرات نقره موجب افزایش معنی‌دار درصد و سرعت جوانه‌زنی، متوسط جوانه‌زنی روزانه، شاخص همزمانی جوانه‌زنی، شاخص قدرت، طول و وزن خشک گیاهچه‌های ذرت و کاهش میانگین مدت جوانه‌زنی، زمان تا 50 درصد جوانه‌زنی بذرهای ذرت گردید. از میان روش‌های کاربرد نانو‌ذره، پیشتیمار کردن بذرها با 001/0 میلی‌گرم در لیتر و افزودن 1/0 میلی‌گرم در لیتر نانوذره نقره، تأثیر بیشتری در بهبود جوانهزنی، رشد گیاهچهها و افزایش شاخص قدرت بذر داشت. با افزودن 1/0 میلیگرم در لیتر نانوذره نقره به بستر کاشت، سبب شد تا بیشترین درصد جوانه‌زنی، شاخص همزمانی، متوسط جوانه‌زنی روزانه و کمترین میانگین مدت جوانه‌زنی حاصل شود. همچنین کاربرد غلظت‌های مختلف نانوذره نقره در هر دو روش کاربرد موجب افزایش میزان فعالیت آنزیم‌های کاتالاز، پراکسیداز، پلی‌فنول‌اکسیداز و محتوی اسید‌آمینه پرولین نسبت به تیمار شاهد گردید. به‌طور کلی کاربرد غلظت 001/0 میلی‌گرم در لیتر نانوذره نقره به‌روش پیش‌تیمار بذر و افزودن غلظت 1/0 میلی‌گرم در لیتر نانوذره به بستر کاشت جهت بهبود جوانه‌ز‌نی بذر، رشد و خصوصیات بیوشیمیایی گیاهچه‌های ذرت پیشنهاد می‌شود.

کلیدواژه‌ها


Abbasifar, A., F. Shahrabadi, and B. ValizadehKaji., 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant. Nutr. 43 (8): 1104-1118. DOI:10.1080/01904167.2020.1724305.
Abou-Zeid, H.M., and Y. Moustafa. 2014. Physiological and Cytogenetic Responses of Wheat and Barley to Silver Nanopriming Treatment. Inter. J. Appl. Biol. Psheiharm. Technol. 5 (3): 265-278.
Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126. DOI:10.1016/s0076-6879(84)05016-3.
Afrouz, M., and P. Sheikhzadeh. 2023. Improving seed germination, growth, and biochemical characteristics of corn seedlings via the application of iron oxide nanoparticles synthesized from oregano (Origanum vulgare). Iranian J. Seed Sci. Technol. 12(1), 41-60. DOI: 10.22092/ijsst.2022.359765.1447. (In Persian)
Afsheen, S., H. Naseer, T. Iqbal, M. Abrar, A. Bashir, and M. Ijaz. 2020. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Mater. Chem. Phys. 252: 123216. DOI:10.1016/j.matchemphys.2020.123216.
Ahmadi Nouraldinvand, F., R. Seyed Sharifi, S. A. Siadat, and R. Khalilzadeh. 2021. Effect of water limitation and application of bio-fertilizer and nano-silicon on yield and some biochemical traits of wheat. Cereal Res. 10(4): 285-298. DOI:10.22059/jci.2022.333768.2639. (In Persian)
Alshehddi, L.A.A. and N. Bokhari. 2020. Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi J. Biol. Sci. 27(1): 574-580. DOI: 10.1016/j.sjbs.2019.11.013.
Bano, A. 2020. Interactive effects of Ag-nanoparticles, salicylic acid, and plant growth promoting rhizobacteria on the physiology of wheat infected with yellow rust. J. Plant. Pathol. 102(4): 1215-1225. DOI:10.1007/s42161-020-00626-y.
Bates, L. S., R. D. Walderen, and I. D. Taere. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207. DOI:10.1007/BF00018060.
Belava, V.N., O. O. Panyuta, G. M. Yakovleva, Y. M. Pysmenna, and M. V. Volkogon. 2017. The effect of silver and copper nanoparticles on the wheat—Pseudocercosporella herpotrichoides Pathosystem. Nanoscale Res. Lett. 12(1): 1-10. DOI:10.1186/s11671-017-2028-6.
Bhavyasree, P.G., and T.S. Xavier. 2020. Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon. 6:e03323. DOI:10.1016/j.heliyon.2020.e03323.
Chance, B., and A.C. Maehly. 1955. Assay of catalase and peroxidase. Methods Enzymol. 2: 764-775. DOI:10.1016/S0076-6879(55)02300-8.
Chang, C.J., and C.H. Kao. 1998. H2O2 metabolism during senescence of rice leaves: changes in enzyme activities in light and darkness. Plant Growth Regul. 25 (1): 11-15. DOI:10.1023/A:1005903403926.
Choudhury, R., M. Majumder, D. N. Roy, S. Basumallick, and T. K. Misra. 2016. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. Int. Nano Lett. 6(3): 153-159. DOI:10.1007/s40089-016-0181-z.
Daniels, J.K., T. P. Caldwell, K. A. Christensen, and G. Chumanov. 2006. Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Analytical Chem. 78(5): 1724-1729. DOI:10.1021/ac052009v.
Doğaroğlu, Z.G., and N. Köleli. 2017. TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean–Soil Air. Water. 45(11): 1700096. DOI:10.1002/clen.201700096.
Ellis, R.H., and E.H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed. Sci. Technol. 9: 373-409.
ElTemsah, Y.S., and E. J. Joner. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27(1):42-49. DOI:10.1002/tox.20610.
Esper Neto, M., D.W. Britt, K.A. Jackson, C.F. Coneglian, T.T. Inoue, and M.A. Batista. 2021. Early growth of corn seedlings after seed priming with magnetite nanoparticles synthetised in easy way. Acta. Agric. Scandi. Sec-B. Soil Plant Sci. 71(2): 91-97. DOI:10.1080/09064710.2020.1852304.
Finch-Savage, W.E., and S. Footitt. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68 (4): 843-856. DOI:10.1093/jxb/erw477.
Gupta, S.D., A. Agarwal, and S. Pradhan. 2018. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 161: 624-633. DOI:10.1016/j.ecoenv.2018.06.023.
Hazrati R, N. Zare, R. Asghari, P. Sheikhzadeh, and M. Johari-Ahar. 2022. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Appl. Microbiol. Biotechnol. 106(18):6017-6031. DOI: 10.1007/s00253-022-12107-6.
Hazrati R., N. Zare, R. Asghari-Zakaria, and P. Sheikhzadeh. 2023. Green synthesized Ag nanoparticles stimulate gene expression and paclitaxel production in Corylus avellana cells. Appl. Microbiol. Biotechnol. 107(19):5963-5974. DOI: 10.1007/s00253-023-12683-1.
Hunter, E.A., C.A. Glasbey, and R.E.L. Naylor. 1984. The analysis of data from germination tests. J. Agric. Sci. 102 (1): 207 -213. DOI:10.1017/S0021859600041642.
Iqbal, S., M. Farid, M. Zubair, Z.U.Z. Asam, S. Ali, M. Abubakar, S. Farid, and M. Rizwan. 2022. Efficacy of Various Amendments for the Phytomanagement of Heavy Metal Contaminated Sites and Sustainable Agriculture: a review. Pp 239-272. In M. Hasanuzzaman, G. Jalal Ahammed, and K. Nahar(eds). Managing Plant Production under Changing Environment. Springer, Singapore. DOI:10.1007/978-981-16-5059-8_9.
Itroutwar, P.D., G. Kasivelu, V. Raguraman, K. Malaichamy, and S. K. Sevathapandian. 2020. Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis Agric. Biotechnol. 29: 101778. DOI:10.1016/j.bcab.2020.101778.
Kannan, R., R. Arumugam, D. Ramya, K. Manivannan, and P. Anantharaman. 2013. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanotechnol. 3(3): 229-233. DOI:10.1007/s13204-012-0125-5.
Kar, M, and D. Mishra. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant. Physiol. 57 (2): 315-319. DOI:10.1104/pp.57.2.315.
Lahuta, L.B., J. Szablińska-Piernik, K. Głowacka, K. Stałanowska, V. Railean-Plugaru, M. Horbowicz, P. Pomastowski, and B. Buszewski. 2022. The Effect of Bio-Synthesized Silver Nanoparticles on Germination, Early Seedling Development, and Metabolome of Wheat (Triticum aestivum L.). Molecules. 27(7): 2303. DOI:10.3390/molecules27072303.
Mingyu, S., H. Fashui, L. Chao, W. Xiao, L. Xiaoqing, C. Liang, G. Fengqing, Y. Fan, and L. Zhongrui. 2007. Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol. Trace. Element. Res. 118(2): 120-130. DOI:10.1007/s12011-007-0006-z.
Mittal, A.K., Y. Chisti, and U.C. Banerjee. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2): 346-356. DOI:10.1016/j.biotechadv.2013.01.003.
Mohammadi Sanjani, A. M. Hosseinzadeh, and M. Sorahi. 2021. The effect of silver nanoparticles treatment on some physiological and biochemical responses of safflower. Appl. Biol. 33(4): 149-164. DOI:10.22051/jab.2020.31071.1365. (In Persian)
Muhammad, I., M. Kolla, R. Volker, and N. Günter. 2015. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. J. Plant. Nutr. 38 (12): 1803-1821. DOI:10.1080/01904167.2014.990094.
Nawaz, S., and A. Bano. 2020. Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. Recent Patents Food. Nutr. Agric. 11(2):124-136. DOI: 10.2174/2212798410666190716162340.
Ocvirk, D., M. Špoljarević, M. Kristić, J. T. Hancock, T. Teklić, and M. Lisjak. 2021. The effects of seed priming with sodium hydrosulphide on drought tolerance of sunflower (Helianthus annuus L.) in germination and early growth. Ann. Appl. Biol. 178 (2): 400-413. DOI:10.1111/aab.12658.
Patiño-Ruiz, D., L. Sánchez-Botero, L. Tejeda-Benitez, J. Hinestroza, and A. Herrera. 2020. Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: Nanotoxicological considerations for potential environmental applications. Environ. Nanotechnol. Monit. Manage. 14 (100377): 1-10. DOI:10.1016/j.enmm.2020.100377.
Rutkowski, M., L. Krzemińska-Fiedorowicz, G. Khachatryan, K. Bulski, A. Kołton, and K. Khachatryan. 2022. Biodegradable Silver Nanoparticles Gel and Its Impact on Tomato Seed Germination Rate in In-Vitro Cultures. Appl. Sci. 12(5): 2722. DOI:10.3390/app12052722.
Saberbaghban, Z., M. Ahmadzadeh, and H. R. Haddadi. 2020. Effect of nano silver particles on seed germination indices of cotton (Sepid and Varamin) and maize (Single Cross 704) seeds and its effects on Xanthomonas smithii a seed-born pathogen of cotton. Iran. Seed. Sci. Technol. 8 (2): 33-46. (In Persian) DOI:10.22034/IJSST.2018.109046.1046.
Savassa, S.M., H. Castillo-Michel, A.E.P. del Real, J. Reyes-Herrera, J.P.R. Marques, and de H.W. Carvalho. 2021. Ag nanoparticles enhancing Phaseolus vulgaris seedling development: understanding nanoparticle migration and chemical transformation across the seed coat. Environ. Sci. Nano. 8(2): 493-501. DOI:10.1039/D0EN00959H.
Sehnal, K., B. Hosnedlova, M. Docekalova, M. Stankova, D. Uhlirova, Z. Tothova, M. Kepinska, H. Milnerowicz, C. Fernandez, B. Ruttkay-Nedecky, and H. V. Nguyen. 2019. An assessment of the effect of green synthesized silver nanoparticles using sage leaves (Salvia officinalis L.) on germinated plants of maize (Zea mays L.). Nanomaterials. 9(11): 1550. DOI:10.3390/nano9111550.
Sharma, P., D. Bahatt, M.G.H. Zaidi., P. P. Saradhi., P. K. Khanna, and S. Arora. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167(8): 2225-2233. DOI:10.1007/s12010-012-9759-8.
Shavalibor, A., and S. Esmailzadeh. 2019. The effect of silver nanoparticles synthesized by biological method on on growth, physiological and biochemical properties of Melissa officinalis L. Plant. Processes Func. 8 (32): 19-34. (In Persian) DOI:20.1001.1.23222727.1398.8.32.11.9.
Shukla, P., P. Chaurasia, K. Younis, O. S. Qadri, S. A. Faridi, and G. Srivastava. 2019. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol. Environ. Eng. 4(1): 1-15. DOI:10.1007/s41204-019-0058-2.
Singh, Y., S. Kaushal, and R. S. Sodhi. 2020. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv. 2(9): 3972-3982. DOI:10.1039/D0NA00357C.
Smirnov, O., V. Kalynovskyi, Y. Yumyna, P. Zelena, T. Levenets, M. Kovalenko, V. Dzhagan, and M. Skoryk. 2022. Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia. 77: 2715-2724. DOI:10.1007/s11756-022-01117-4.
Stampoulis, D., S. K. Sinha, and J. C. White. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43(24): 9473-9479.
Sun, Q., X. Cai, J. Li, and M. Zheng. 2014. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and surfaces A: Physiochem. Eng. Aspects. 444: 226-231. DOI:10.1016/j.colsurfa.2013.12.065.
Swaminathan, A., K. B. Kalyani, S. K. Sudhagar, S. Bhuvaneswari, S.T. Nagalatha, T. L. S. Raj, V. N. Sumantran, and S. Chatterjee. 2021. Nitric oxide mitigates thalidomide-induced abnormalities during germination and development of fennel seeds. Toxicol. Res. 10(4): 893-901. DOI:10.1093/toxres/tfab071.
Thuesombat, P., S. Hannongbua, S. Akasit, and S. Chadchawan. 2014. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf.104:.302-309. DOI:10.1016/j.ecoenv.2014.03.022.
Tong, X., N. Guo, Z. Dang, Q. Ren, and H. Shen. 2018. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.). IET. Nanobiotechnol. 12(7): 987-993. DOI:10.1049/iet-nbt.2017.0230.
Vashisth, A., and S. Nagarajan. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant. Physiol. 167 (2): 149-156. DOI:10.1016/j.jplph.2009.08.011.
Yasmeen, F., A. Razzaq, M. N. Iqbal, and H. M. Jhanzab. 2015. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci. 6(4): 112-117. DOI:10.12692/ijb/6.4.112-5.
Yin, L., B. P. Colman, B. M. McGill, J. P. Wright, and E. S. Bernhardt. 2012. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLOS ONE 7(10): e47674. DOI:10.1371/journal.pone.0047674.
Zari, H., P. Babak, and R. Asad. 2015. The effect of priming with nano-sliver on agronomic traits of safflower cultivars. J. Ess. Oil Bearing Plants. 18(5): 1148-1156. DOI:10.1080/0972060X.2014.976664.