Document Type : Original Article

Authors

1 Agricultural Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran.

2 Associate Professor, Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran.

Abstract

In this research, morphological and biochemical traits of 10 isolates of Pseudomonas fluorescens bacteria, salt tolerance and the effect of bacteria on germination and seedling growth indicators of sesame cultivars under salt stress were conducted. All isolates were Gram-negative and had positive motility and fluorescent properties. Among the bacteria, P2, P3 and P9 isolates were more capable of solubilizing inorganic phosphorus. The ability to produce siderophore was higher in some isolates and the isolates P1, P2, P3, P8, and P10 showed the highest in vitro salt-tolerance. A factorial experiment including two sesame cultivars, 4 salinity levels and inoculation with 3 isolates was done in the form of a completely randomized design in three replications. Based on the results, the effect of bacteria, salinity, variety and their interaction on the percentage and rate of germination, germination indices, allometric coefficient and seedling length and weight index were significant. Under salt stress, the germination and growth of seedlings significantly decreased but, the pretreatment of sesame seeds with salt-tolerant isolates increased the characteristics related to germination and growth indices of sesame cultivars. The highest effect on all parameters including germination rate belonged to P9. Therefore, P9 isolate can be used to increase the tolerance of sesame to salinity stress.

Keywords

Abbas, Z. R., Al-Ezee, A. M. M., & Authman, S. H. (2019). Siderophore production and phosphate solubilization by Bacillus cereus and Pseudomonas fluorescens isolated from Iraqi soils and soil characterization. International Journal of Pharmaceutical and Clinical Research10(01), 74-79. https://doi.org/10.25258/ijpqa.10.1.12
Aghighi Shahverdi, M., Ataei Somagh, H., Mamivand, B., Habibipour, S., & Hemati, M. (2017). Effect of seed priming with plant growth-promoting rhizobacteria (PGPR) on germination components of flaxseed (Linum usitatissimum L.) under salinity stress. Iranian Journal of Seed Research, 4(1), 9-24. https://doi.org/10.5555/20219901248 [In Persian]
Ahmad, F., Ahmad, I., & Khan, M. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiological Research163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
Al-Barakah, F. N., & Sohaib, M. (2019). Evaluating the germination response of Chenopodium quinoa seeds to bacterial inoculation under different germination media and salinity conditions. Seed Science and Technology47(2), 161-169. https://doi.org/10.15258/sst.2019.47.2.05
Ashraf, M., Shahzad, S. M., Imtiaz, M., & Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants: Focusing on the activities of nitrogen metabolizing enzymes: A review. Journal of Plant Nutrition41(8), 1065-1081. https://doi.org/10.1080/01904167.2018.1431670
Azhar, M., Uniyal, V., Chauhan, N., & Rawat, D. S. (2014). Isolation and biochemical characterization of halophiles from Sahastradhara region, Dehradun, India. International Journal of Current Microbiology and Applied Sciences3, 753-760.
Bandehagh, A., Toorchi, M., Farajzadeh, D., Dehganian, Z., & Pirzad, S. (2018). Effect of Pseudomonas fluorescens FY32 on the leaf proteome pattern of rapeseed under salinity stress. Journal of Genetic Engineering and Biotechnology20(3), 216-222. https://doi.org/20.1001.1.25885073.1397.7.2.8.9 [In Persian]
Bayari, A., Nezarat, S., & Gholami, A. (2009). Relationship between germination index of seed corn with inoculation of PGPR (PseudomonasAzospirillum, and Azotobacter). 11th Soil Science Congress, Gorgan, Iran. July 12, 2009. [In Persian]
Beheshti, A., Tavakoli, H., & Koocheki, A. (2000). The effect of salt stress and temperature on germination of different alfalfa cultivars. Agricultural Sciences and Technologyhttps://doi.org/10.5555/20000712406 [In Persian]
Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
Bharti, N., Barnawal, D., Maji, D., & Kalra, A. (2015). Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microbial Ecology70(1), 196-208. https://doi.org/10.1007/s00248-014-0557-4
Biswas, J. K., Banerjee, A., Rai, M., Naidu, R., Biswas, B., Vithanage, M., Dash, M. C., Sarkar, S. K., & Meers, E. (2018). Potential application of selected metal-resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma330, 117-124. https://doi.org/10.1016/j.geoderma.2018.05.034
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil383, 3-41. https://doi.org/10.1007/s11104-014-2131-8
Daneshvar, M., Maleki, M., Shakeri, S., & Baghizadeh, A. (2020). Screening and identification of Iranian native phosphate solubilizing bacteria and investigation of their genetic diversity using RAPD markers. Nova Biologica Reperta, 6(4), 402-414. https://doi.org/10.29252/nbr.6.4.402 [In Persian]
Das, S., Nurunnabi, T. R., Parveen, R., Mou, A. N., Islam, M. E., Islam, K. M. D., & Rahman, S. (2019). Isolation and characterization of indole acetic acid-producing bacteria from rhizosphere soil and their effect on seed germination. International Journal of Current Microbiology and Applied Sciences, 8(3), 1237-1245. https://doi.org/10.20546/ijcmas.2019.803.146
Egamberdieva, D., Davranov, K., Wirth, S., Hashem, A., & Abd_Allah, E. F. (2017). Impact of soil salinity on the plant growth-promoting and biological control abilities of root-associated bacteria. Saudi Journal of Biological Sciences, 24(7), 1601-1608. https://doi.org/10.1016/j.sjbs.2017.07.004
Fathollahy, S., & Mozaffari, A. (2020). Investigation of the effect of seed biopriming with plant growth-promoting rhizobacteria (PGPR) on antioxidant enzymes activity of seedlings and germination indices of two wheat cultivars under salt stress conditions. Seed Science and Technology, 9(1), 27-44. https://doi.org/10.22034/ijsst.2018.122519.1215 [In Persian]
Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth-promoting rhizobacteria (PGPR) on germination, seedling growth, and yield of maize. International Journal of Agricultural Biosystems Engineering, 3(1), 9-14. [In Persian]
Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. European Journal of Applied Microbiology, 5(2), 123-127. https://doi.org/10.1007/BF00498806
Guerrieri, M. C., Fanfoni, E., Fiorini, A., Trevisan, M., & Puglisi, E. (2020). Isolation and screening of extracellular PGPR from the rhizosphere of tomato plants after long-term reduced tillage and cover crops. Plants, 9(5), 668. https://doi.org/10.3390/plants9050668
Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomedical Research, 2016, Article 6284547. https://doi.org/10.1155/2016/6284547.
Hamidi, A., Asgharzadeh, A., Ahmadi, A., Akbari Vala, S., & Choukan, R. (2021). Effect of plant growth-promoting bacteria (PGPB) and mycorrhizal fungi on seed germination and seedling vigor traits of three maize (Zea mays L.) hybrids. Journal of Sustainable Agricultural Sciences, 31(3), 149-167. [In Persian]
Jiang, H., Wang, T., Chi, X., Wang, M., Chen, N., Chen, M., Pan, L., & Qi, P. (2020). Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiology Journal, 37(2), 110-118. https://doi.org/10.1080/01490451.2019.1666195
Kafi, F. M., Nezami, A., Hosseini, H., & Masoumi, A. (2005). Physiological effects of drought stress induced by polyethylene glycol on germination of lentil (Lens culinaris Medik.) genotypes. Iranian Journal of Field Crops Research, 3(1), 69-80. https://doi.org/10.22067/GSC.V3I1.1293 [In Persian]
Khalifa, A., Metwally, A., Ammar, R. B., & Farghaly, F. A. (2020). ACC deaminase-containing rhizobacteria from the rhizosphere of Zygophyllum coccineum alleviate salt stress impact on wheat (Triticum aestivum L.). Scientific Journal of King Faisal University - Basic and Applied Sciences, 21, 89-102. https://doi.org/10.37575/b/agr/1988
Khanna, K., Jamwal, V. L., Sharma, A., Gandhi, S. G., Ohri, P., Bhardwaj, R., Al-Huqail, A. A., Siddiqui, M. H., Ali, H. M., & Ahmad, P. (2019). Supplementation with plant growth-promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere, 230, 628-639. https://doi.org/10.1016/j.chemosphere.2019.05.072
Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell, 3(11), 1187-1193. https://doi.org/10.1105/tpc.3.11.1187
Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativaMedicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199, 104577. https://doi.org/10.1016/j.still.2020.104577
Mahlooji, M. (2021). Effect of saline water irrigation and foliar application of maternal plant on germination characteristics of three barley cultivars. Crop Science Research in Arid Regions, 2, 188-179. https://doi.org/10.22034/CSRAR.2021.262104.1072 [In Persian]
Manasa, K., Reddy, S., & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54.
Marakana, T., Sharma, M., & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and their effects on wheat plants as PGPR. The Pharma Innovation Journal, 7, 102-110.
Miransari, M., Abrishamchi, A., Khoshbakht, K., & Niknam, V. (2014). Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology, 34(2), 123-133. https://doi.org/10.3109/07388551.2012.731684 [In Persian]
Moravej, R., Alavi, S. M., Azin, M., & Salmanian, A. H. (2019). Production of xanthan gum by the native strain of Xanthomonas citri in whey medium and evaluation of its physicochemical properties. Biology of Microorganisms Journal, 8(30), 69-79. https://doi.org/10.22108/BJM.2019.115766.1185 [In Persian]
Mostafavi, K., & Heidarian, A. (2021). Effects of different salinity levels on germination indices in four sunflower varieties. Environmental Stress and Crop Science, 14(3), 1-15. [In Persian]
Mousa, W. K., Shearer, C. R., Limay-Rios, V., Zhou, T., & Raizada, M. N. (2015). Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Frontiers in Plant Science, 6, 805. https://doi.org/10.3389/fpls.2015.00805
Padikasan, I. A., Chinnannan, K., Kumar, S., & Subramaniyan, G. (2018). Agricultural biotechnology: Engineering plants for improved productivity and quality. In D. Barh & V. Azevedo (Eds.), Omics technologies and bio-engineering: Towards improving quality of life (pp. 87-104). Elsevier. https://doi.org/10.1016/B978-0-12-815870-8.00006-1
Persello-Cartieaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: Molecular plant–rhizobacteria interactions. Plant, Cell & Environment, 26(2), 189-199. https://doi.org/10.1046/j.1365-3040.2003.00956.x
Piri, R. (2018). Effect of seed inoculation with plant growth-promoting rhizobacteria (PGPR) on some germination, biochemical indices, and element contents of fennel (Foeniculum vulgare L.) under salinity stress. Iranian Journal of Field Crops Research, 49(3), 159-161. [In Persian]
Purru, S., Sahu, S., Rai, S., Rao, A., & Bhat, K. (2018). GinMicrosatDb: A genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiologia Molecular Biology of Plants, 24(5), 929-937. https://doi.org/10.1007/s12298-018-0558-8
Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 1785. https://doi.org/10.3389/fmicb.2016.01785
Safdarian, M., Askari, H., Soltani, M., & Nematzadeh, G. (2017). Identification of halophile bacteria from salt deserts of Iran and study of some of their physiological traits. Biology of Microorganisms Journal, 6(22), 45-57. [In Persian]
Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth-promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34(10), 635-648. https://doi.org/10.1007/s10295-007-0240-6
Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria. American Phytopathological Society (APS Press). https://doi.org/10.5555/20013064240
Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
Sharma, A., Shankhdhar, D., & Shankhdhar, S. (2013). Enhancing grain iron content of rice by the application of plant growth-promoting rhizobacteria. Plant, Soil and Environment, 59(2), 89-94. https://doi.org/10.5555/20133097938
Soltani Alikooyi, M., Abbasi Surki, A., Mobini Dehkordi, M., & Kiyani, S. (2020). Effects of plant growth-promoting rhizobacteria on germination and early growth of alfalfa (Medicago sativa) under salt stress conditions. Iranian Journal of Seed Research, 6(2), 1-14. https://doi.org/10.29252/yujs.6.2.1 [In Persian]
Stassinos, P. M., Rossi, M., Borromeo, I., Capo, C., Beninati, S., & Forni, C. (2022). Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformisPlant Biosystems, 156(2), 370-383. https://doi.org/10.1080/11263504.2020.1857872
Sudewi, S., Ala, A., Patandjengi, B., BDR, M., & Rahim, A. (2021). Screening of plant growth promotion rhizobacteria (PGPR) to increase local aromatic rice plant growth. International Journal of Pharmaceutical Research. 13(1), 924-931. https://doi.org/10.31838/ijpr/2021.13.01.151
Tahmasbi, F., Lakzian, A., Khavazi, K., & Pakdin Parizi, A. (2014). Isolation, identification, and evaluation of siderophore production in Pseudomonas bacteria and its effect on hydroponically grown corn. Cell and Molecular Research, 27(1), 75-86. https://doi.org/20.1001.1.23832738.1393.27.1.8.6. [In Persian]
Wahid, A., Farooq, M., Basra, S. M., Rasul, E., & Siddique, K. H. (2010). Germination of seeds and propagules under salt stress. In M. Pessarakli (Ed.), Handbook of Plant and Crop Stress (3rd ed., pp. 321-337). Taylor and Francis.
Wahyudi, A. T., Astuti, R. P., Widyawati, A., & Meryandini, A. (2011). Characterization of Bacillus sp. strains isolated from the rhizosphere of soybean plants for their potential as plant growth-promoting rhizobacteria. Journal of Microbiology and Antimicrobials3(2), 34-40.
Wang, W., Wu, Z., He, Y., Huang, Y., Li, X., & Ye, B.-C. (2018). Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicology and Environmental Safety, 164, 520-529. https://doi.org/10.1016/j.ecoenv.2018.08.070
Yaish, M. W., Antony, I., & Glick, B. R. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie van Leeuwenhoek, 107(6), 1519-1532. https://doi.org/10.1007/s10482-015-0445-z
Younesi, O., Poustini, K., Chaichi, M. R., & Pourbabaie, A. A. (2013). Effect of growth-promoting rhizobacteria on germination and early growth of two alfalfa cultivars under salinity stress conditions. Journal of Crop Improvement, 14(2), 83-97. https://doi.org/10.22059/jci.2013.29503. [In Persian]
Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61, 49-64. https://doi.org/10.1146/annurev-arplant-042809-112453urev-arplant-042809-112308.