Aminbaigi, A., Jalilian, J., Chaghazardi, H., Kahrizi, D., & Khalilzadeh, R. (2023). Evaluation of different fertilizer sources effect on yield, forage quality and oil of camelina (Camelina sativa L.) under water deficit stress.
Journal of Agricultural Science and Sustainable Production, 33(2), 1–14.
https://doi.org/10.22034/SAPS.2022.50509.2831 [In Persian]
Association of Official Seed Analysts. (1983). Seed vigor testing handbook. Contribution No. 32 to the handbook on seed testing.
Balesevic-Tubic, S., Tatic, M., Dordevic, V., Nikolic, Z., & Dukic, V. (2010). Seed viability of oil crops depending on storage conditions.
Helianthus, 33(52), 153–160.
https://doi.org/10.2298/HEL1052153b
Balesevic-Tubic, S., Tatic, M., Miladinovic, J., & Pucarevic, M. (2007). Changes of fatty acids content and vigor of sunflower seed during natural aging.
Helia, 30(47), 61–67.
https://doi.org/10.2298/HEL0747061B
Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management.
Industrial Crops and Products, 94, 690–710.
https://doi.org/10.1016/j.indcrop.2016.09.034
Catao, H. C. R. M., Gomes, L. A. A., Guimaraes, R. M., Fonseca, H. F. P., Caixeta, F., & Galvao, A. G. (2018). Physiological and biochemical changes in lettuce seeds during storage at different temperatures.
Horticultura Brasileira, 36, 118–125.
https://doi.org/10.1590/S0102-053620180120
Chaturvedi, S., Bhattacharya, A., Khare, S. K., & Kaushik, G. (2019). Camelina sativa: An emerging biofuel crop. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1–38). Springer.
Cheshmehsefid, R., & Khajeh Hosseini, M. (2022). Investigation on storage potential of camelina (Camelina sativa L.) seeds. ISTA Seed Symposium. Greece, 2022-11-02.
Chiu, R., Nahal, H., Provart, N., & Gazzarrini, S. (2012). The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.
BMC Plant Biology, 12, 15.
https://doi.org/10.1186/1471-2229-12-15
Fangshan, X., Xianguo, W., Manli, L., & Peisheng, M. (2015). Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents.
Plant Physiology and Biochemistry, 94, 122–129.
https://doi.org/10.1016/j.plaphy.2015.06.002
Groot, P. C., Surki, A. A., de Vos, R. C. H., & Kodde, J. (2012). Seed storage at elevated partial pressure of oxygen: A fast method for analyzing seed ageing under dry conditions.
Annals of Botany, 110(6), 1149–1159.
https://doi.org/10.1093/aob/mcs198
Guo, C., Shen, Y., & Shi, F. (2020). Effect of temperature, light, and storage time on the seed germination of
Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes.
Forests, 11, 1–16.
https://doi.org/10.3390/f11030300
Huang, Y., Lin, C., He, F., Li, Z., Guan, Y., Hu, Q. J., & Hu, J. (2017). Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2, and relevant gene expression.
BMC Plant Biology, 17(1), 1–16.
https://doi.org/10.1186/s12870-016-0951-9
International Seed Testing Association. (2022). International rules for seed testing.
Kapoor, N., Aria, A., Siddiqui, M. A., Kumar, H., & Amir, A. (2011). Physiological and biochemical changes during seed deterioration in aged seeds of rice.
American Journal of Plant Physiology, 6, 28–35.
https://doi.org/10.3923/ajpp.2011.28.35
Krzyżaniak, M., Stolarski, M. J., Tworkowski, J., Puttick, D., Eynck, C., Załuski, D., & Kwiatkowski, J. (2019). Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe.
Industrial Crops and Products, 138, 111443.
https://doi.org/10.1016/j.indcrop.2019.06.006
Lozano-Isla, F., Campos, M. L. O., Endres, L., Bezerra-Neto, E., & Pompelli, M. F. (2018). Effects of seed storage time and salt stress on the germination of
Jatropha curcas L.
Industrial Crops and Products, 118, 214–224.
https://doi.org/10.1016/j.indcrop.2018.03.052
Nagel, M., Pistrick, J., Mascher, M., Bröner, A., & Groot, S. P. C. (2016). Barley seed aging: Genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration.
Frontiers in Plant Science, 7, 1–11.
https://doi.org/10.3389/fpls.2016.00388
Obeng, E., Obour, A. K., Nelson, N. O., Moreno, J. A., Ciampitti, I. A., Wang, D., & Durrett, T. P. (2019). Seed yield and oil quality as affected by Camelina cultivar and planting date.
Journal of Crop Improvement, 33, 202–222.
https://doi.org/10.1080/15427528.2019.1566186
Rajjou, L., Lovigny, Y., Groot, S. P. C., Belghazi, M., Job, C., & Job, D. (2008). Proteome-wide characterization of seed aging in
Arabidopsis: A comparison between artificial and natural aging protocols.
Plant Physiology, 148, 620–641.
https://doi.org/10.1104/pp.108.123141
Righini, D., Zanetti, F., & Monti, A. (2016). The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo.
Oils and Fats, Crops and Lipids, 23, D504.
https://doi.org/10.1051/ocl/2016021
Singh, J., Paroha, S., & Prakash Mishra, R. (2017). Factors affecting oilseed quality during storage with special reference to soybean (
Glycine max) and niger (
Guizotia abyssinica) seeds.
International Journal of Current Microbiology and Applied Sciences, 6(10), 2215–2226.
https://doi.org/10.20546/ijcmas.2017.610.262
Soltani, A., & Maddah, V. (2010). Simple, applied programs for education and research in agronomy. Shahid Beheshti University Press. [In Persian]
Stefanoni, W., Latterini, F., Ruiz, J., Bergonzoli, S., Palmieri, N., & Pari, L. (2021). Assessing the camelina (
Camelina sativa (L.) Crantz) seed harvesting using a combine harvester: A case study on the assessment of work performance and seed loss.
Sustainability, 13(1), 195.
https://doi.org/10.3390/su13010195
Teimoori, N., Ghobadi, M., & Kahrizi, D. (2023). Improving the growth characteristics and grain production of camelina (
Camelina sativa L.) under salinity stress by silicon foliar application.
Agrotechniques in Industrial Crops, 3(1), 1–13.
https://doi.org/10.22126/ATIC.2023.8681.1081 [In Persian]
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., & Tamura, N. (2008). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in
Arabidopsis seeds.
Plant Physiology, 146, 1368–1385.
https://doi.org/10.1104/pp.107.113738
Veljkovic, V. B., Kostic, M. D., & Stamenkovic, O. S. (2022). Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review.
Industrial Crops and Products, 178, 114539.
https://doi.org/10.1016/j.indcrop.2022.114539
Walia, M. K., Zanetti, F., Gesch, R. W., Krzyżaniak, M., Eynck, C., Puttick, D., Alexopoulou, E., Royo-Esnal, A., Stolarski, M. J., Isbell, T., & Monti, A. (2021). Winter camelina seed quality in different growing environments across North America and Europe.
Industrial Crops and Products, 169, 113639.
https://doi.org/10.1016/j.indcrop.2021.113639
Wawrzyniak, M., Michalak, M., & Chmielarz, P. (2020). Effect of different conditions of storage on seed viability and seedling growth of six European wild fruit woody plants.
Annals of Forest Science, 77, 58.
https://doi.org/10.1007/s13595-020-00963-z
Yuan, L., & Li, R. (2020). Metabolic engineering of a model oilseed
Camelina sativa for the sustainable production of high-value designed oils.
Frontiers in Plant Science, 11, 11–24.
https://doi.org/10.3389/fpls.2020.00011
Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe.
Agronomy for Sustainable Development, 41, 2.
https://doi.org/10.1007/s13593-020-00663-y
Zarei, Sh., Hassibi, P., Kahrizi, D., & Safieddin Ardebili, S. M. (2022). Effect of nitrogen application on camelina (
Camelina sativa) oil seed yield and yield components at different planting dates.
Iranian Journal of Field Crops Research, 19(4), 311–325.
https://doi.org/10.22067/JCESC.2021.37179.0 [In Persian]
Zinsmeister, J., Leprince, O., & Buitink, J. (2020). Molecular and environmental factors regulating seed longevity.
Biochemical Journal, 477(2), 305–323.
https://doi.org/10.1042/BCJ20190165